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Abstract—As intermittent energy resources become more sig-
nificant in power production, traditional capacity planning may
be insufficient to ensure reliable system operation. A system plan-
ner must ensure that flexibility solutions are available to respond
to large and uncertain ramping events. These solutions may be
operational, such as improved unit commitment and dispatch,
curtailment of renewables, or demand response; procurement
based, such as new fast ramping resources or batteries; or involve
market reform. This paper outlines a new methodology for mod-
eling the economic tradeoffs in implementing flexibility solutions
for integrating renewables. The proposed model includes both a
stochastic treatment of system states to account for a wide range
of operating conditions and an adapted production simulation
methodology that weighs the cost of reliability and subhourly
flexibility violations against the cost of the operational flexibility
solutions available to mitigate them. The model’s functionality is
demonstrated with a case study of California at a 50% RPS
in 2030. The model tests the value of 1,088 MW of generic
flexible units, relative to the same capacity of must-run resources,
finding an expected annual value of $347±42 million/yr. Potential
applications of the model for resource planning and procurement
are also discussed.

I. NOMENCLATURE

Symbol Description

SETS

T Set of time periods in forecast window

Iflex, Ifirm Set of all units that can/cannot change unit

commitment in forecast window

Iintra Set of all units that can provide intra-

timestep flexibility

J Set of renewable technology types, or in-

dividual renewable plants

F+, F− Set of all facets forming the expected up-

ward/downward flexibility deficiency re-

sponse surface

VARIABLES

xit Generation of unit i in time t (MW)

nit Commitment of unit i in time t, {0, 1}

cjt Curtailment of renewable type j in time

period t (MW)

ut, ut Unserved energy/overgeneration in time t

(MW)
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Symbol Description

rrit, rrit Upward/downward ramp rate of unit i in

time t (MW/timestep)

ramp+t , ramp−t Intra-timestep upward/downward ramp

policy

res+t , res−t Intra-timestep upward/downward reserve

policy

EFD
+

t , EFD
−

t Expected upward/downward flexibility de-

ficiency (MWh)

PARAMETERS

Lt Forecasted load in time period t

Rjt Forecasted generation from renewable

type j in time period t

Nit Locked in commitment of unit i in time t

from previous window, {0, 1}

RRi, RRi Maximum upward/downward ramp rate

for unit i (MW/timestep)

Xit, Xit Maximum/minimum operating level for

unit i in time period t

β
f
k kth coefficient in facet f ∈ F+

γ
f
k kth coefficient in facet f ∈ F−

II. INTRODUCTION

Renewable portfolio standards, feed in tariffs, and other

policy incentive mechanisms, are increasing the penetration of

intermittent renewable resources on electricity systems around

the world. As a result, traditionally structured power systems

must adjust to accommodate these new resources. Intermittent

resources increase both the forecast error and the variability

in net loads across multiple time scales [1]. This presents a

challenge to system planners tasked with deciding which new

resources to build, subject to forecasted trends in load growth

and future renewable development. Traditionally, planning

to a reliability standard involved ensuring sufficient system

capacity to meet peak load. However, increasing renewable

penetrations can cause system reliability problems due to

inadequate flexibility rather than capacity. In this context,

system planners must account for generator characteristics that

are not typically modeled in capacity planning. These include

start-up and shutdown time, minimum up and down time, min-

imum operating levels, and maximum ramp rates. Flexibility

analysis for systems with high penetrations of renewables must

therefore include significantly more operational detail than has

been required by traditional reliability analysis.
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The requirement for greater system flexibility with higher

renewable penetrations has been well established in numerous

integration studies, for example [2], [3], [4], and as summa-

rized in [5], [6], [7]. These analyses have attempted to quantify

flexibility needs on a system planning time scale by looking

at system operations under greater renewable penetrations.

Regional studies have been typical in recent years for system

operators facing the coming challenge of integrating significant

amounts of renewables. For example, in California the system

operator developed a methodology to assess integration issues

for a 20% RPS, finding that thermal resources may not always

be sufficiently flexible at low loads and recommending a

reduction in self scheduling [4]. NREL’s western wind and

solar integration study examines the needs of the western

states and concluded that 35% penetration of renewables was

possible with increased balancing area cooperation, improved

day-ahead forecasting, and sub-hourly scheduling [3]. These

studies identify flexibility as an important component of the

planning problem, but make only general recommendations

regarding planning for flexibility.

Lannoye et al. recognize that system planning with flexibil-

ity targets increasingly includes elements of system operations

and that those targets can be met by sources other than

conventional generation [8], [9]. They define metrics by which

to judge flexibility needs. Analogous to loss of load probability

(LOLP) and effective load carrying capability (ELCC) used in

traditional capacity planning, they propose inadequate ramp

resource probability (IRRP) and effective ramping capability

(ERC).

Capacity planning in the US generally allows an expectation

of unserved load due to generator outages of 1 event every

10 years. However unlike traditional capacity planning, there

are no accepted standards for reliability to determine adequate

system flexibility. The “1-in-10” standard implicitly values

the level of reliability customers are willing to accept, as

would any new reliability standard for flexibility. The value

of service reliability has been explicitly treated in the capacity

planning problem in the past, for example in a recent study

of the ERCOT reserve margin [10], though the “1-in-10”

standard is well accepted and will likely continue to be so in

the future. Rather than determine a new flexibility reliability

standard however, we propose that the cost of various types

of system failures due to flexibility deficiencies be explicitly

considered in system planning, balancing gains in system

reliability against the cost of the measures taken to achieve

them.

The costs of system failures have previously been poorly

defined. Survey studies have been done on value of lost load

(VOLL), for example [11], [12], however the results range

widely. Our motivation for including explicit system failure

costs is to open the discussion between stakeholders in system

planning on what mutually acceptable best estimates of failure

costs might be, rather than relying on implicit values contained

in the definition of a new flexibility standard that may not be

exposed to stakeholder scrutiny. We apply this explicit cost

framework to both system operations and system planning.

In system operations, reserves are held for capacity and

flexibility needs. Ela, Milligan, and Kirby show that the

scheduling of typical reserve products has to change as re-

newable penetrations increase [13]. They include a review

of work done in determining reserve requirements for high

penetration systems including [14], [15], [16], [17], [18].

Ortega-Vasquez and Kirschen[14] introduce the idea of trading

off the marginal cost of spinning reserve against the social

cost of load shedding. They use a spinning reserve requirement

differentiated by net load level and determined offline. Morales

et al [15], Yong et al [16], Bouffard et al [17], and Wang

et al [18], solve for operating reserve levels endogenously

using two-stage stochastic unit commitment problems. These

are short term models solving for the operations of a day or

less. We build on this work by linking system reserves to

an expectation of system imbalances depending on system

state, and defining a cost for each imbalance. Reserves can

therefore be solved for endogenously when performing least

cost commitment and dispatch.

In system planning, the least cost portfolio for meeting

capacity and flexibility needs may include non-traditional

solutions [9], [19]. Examples of these include demand re-

sponse, storage devices, improved forecasting, changes in

market structure, renewable curtailment, and informed renew-

able procurement. We present a modeling methodology for

determining the least cost portfolio of flexibility solutions for a

given system. This method is based on a value-based reliability

planning framework for flexibility, which is developed in more

detail in a companion paper [20]. The modeling methodology

described in this paper builds on traditional loss of load

probability (LOLP) reliability analysis with an adapted mixed

integer programming (MIP) production simulation model to

address system flexibility. The MIP approach was chosen

because of its extensive use in the energy sector today, the

detailed and current datasets available for various energy

systems, and the scalability of commercial solver packages.

The planning framework is designed to help system planners

answer the following question: which portfolio of capacity and

flexibility solutions serve system needs at the lowest total cost?

III. THEORY

In value-based reliability analysis, the costs of reliability

solutions can be justified when the solutions adequately avoid

more costly reliability failures. This concept can be applied

in both planning and operations. In planning, investments in

capacity might be made to avoid firm load curtailment if

the fixed costs do not exceed the avoided costs associated

with firm load curtailment due to inadequate capacity [21],

[22]. In operations, reserve levels can be adjusted based on

the cost of holding additional reserves and the expected cost

of reliability failures associated with inadequate reserves. In

this analysis, we incorporate the cost trade-offs involving both

traditional reliability failures and flexibility-based failures and

their solutions in both the operations model and the planning

decision.

To illustrate the tradeoff between flexibility violations and

flexibility solutions, consider the case in which renewable

curtailment is used as a flexibility solution. When the cost

penalty for renewable curtailment is small, flexibility chal-

lenges brought on by renewables can be managed by curtailing
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the renewables. This is illustrated for an example day in

Figure 2(a)). In this example, units are kept online to provide

operating reserves throughout the day. These units cannot

generate less than their minimum stable levels, so the system

curtails renewables to balance the load. At the other extreme,

curtailment costs can be set so high that the system prioritizes

delivering renewables over holding operating reserves. This is

shown for the same day in Figure 2(b). In this example, ther-

mal plants are shut down in the morning to allow maximum

delivery of solar power as the sun rises. When unexpected

fog or cloud cover results in lower than anticipated renewable

output, the operating reserves are not adequate to meet demand

and the system experiences unserved energy.

Fig. 1. Example day in system with renewable curtailment penalty cost
that is (a) significantly lower, and (b) higher than other violation penalty
costs. The relative costs in this example determine whether the system
experiences renewable curtailment or violations like unserved energy under
high penetrations of renewables.

In the modeling framework described in this paper, these

economic tradeoffs are treated explicitly in the economic unit

commitment problem via cost penalties attributed to both

flexibility violations and renewable curtailment. The various

types of flexibility violations are discussed in more depth in

[20].

IV. METHODOLOGY

Unit scheduling through solving security constrained unit

commitment (SCUC) on a day ahead and hour ahead basis

is common practice in deregulated competitive electricity

markets[18]. These short time horizon deterministic models

can incorporate many features of the system while maintaining

acceptable run times. System planning, on the other hand,

requires detailed examination of potential future system con-

figurations, ideally under the full range of potential net load

and system outage conditions that could be encountered. Tra-

ditional capacity planning can incorporate the full distributions

of unit outages, and stochastic renewable production and load

because modeling operations is unnecessary. Very infrequent

loss-of-load events can still be captured without being limited

by computing resources.

System planning for both capacity and flexibility, however,

requires that operations are modeled to capture the capability

of the system to avoid flexibility violations. With limited

computing resources, the planning problem has to include

the components of operations that are most important in

evaluating flexibility, while stripping out components that have

less of an impact on flexibility results. This tradeoff should be

made on a system by system basis, however two main model

features are necessary to capture the flexibility of a system.

Firstly, unit characteristics, including ramp rates, start up and

shutdown times, minimum up and down times, and minimum

and maximum operating levels, should be captured. Secondly,

the set of model runs chosen must be representative of the

distributions of system conditions, such that the likelihoods of

flexibility violations are properly captured.

The methodology described in this paper assumes that

the number of MWs needed to meet the “1-in-10” capacity

planning standard has already been identified and included in

the resource stack. This number can be found using a loss

of load probability (LOLP) approach, such as defined in [23].

We assess different resource planning portfolios by comparing

the expected operating costs, including the expected costs of

system failures, using multiple runs of an adapted production

simulation methodology. The portfolios vary in the flexibility

characteristics assigned to the MWs identified for capacity (i.e.

the types of generating units used), and the additional procured

resources or flexibility solutions. We can then determine

the least cost portfolio solution to meeting future capacity

and flexibility needs. This methodology is described in the

following section.

A. Production simulation model

Multistage production simulation has been used in recent

years to capture the effects of forecasting errors that are

experienced between the day-ahead, hour-ahead, and real-

time markets [4]. The adapted production simulation method

presented in this paper adopts this approach and makes two

additional contributions to production simulation. The first

is a probabilistic framework to ensure that the results are

sufficiently representative of input distributions, including low
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probability tail events, for planning analysis. The results of the

model are therefore expected values of operating costs, viola-

tions, and costs of violations, which reflect the distributions of

expected system conditions. The number of runs necessary for

convergence to acceptable tolerances on expectations will vary

by system. Convergence analysis is demonstrated in the case

study later in this paper. The second is valuation of flexibility

violations with endogenous treatment of reserve scheduling

that captures the economic trade-offs in system operations with

high penetrations of renewables. The multistage structure of

the modeling approach is summarized at a high level in Figure

2. The two primary contributions are described below.

Fig. 2. Schematic of REFLEX operations modeling methodology.
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1) Probabilistic Framework: One challenge in using pro-

duction simulation in a planning process is the need for high

resolution historical data. In traditional production simula-

tion, a single year of historical load, renewable, and hydro

data is adjusted to represent the simulation year (by scaling

if necessary). An “average” year is often selected for this

purpose so that the simulation results characterize typical

operations. This limits the range of phenomena encountered

in the simulation to the types of events that were experienced

in that historical year. While this can provide a useful look at

system operations under normal conditions, this approach does

not provide enough operational information for a planning

analysis, which must also ensure that the system is adequate

to meet demand during unlikely events.

Rather than simulating a single year of operations, the

model simulates a collection of days that are randomly gen-

erated from historical data in order to better represent the full

range of system conditions that may be encountered. Each

scenario is formed by combining randomly selected load,

wind, and solar profiles from the historical record. In order

to preserve seasonal and meteorological correlations in these

datasets, the historical data is first binned and then daily

profiles of each variable are selected from within the same

bin. Binning strategies may vary across systems, but initial

tests have been performed with a binning scheme that first

separates days based on month and then bins the days in

each month according to whether the system experiences high

load or low load conditions for that month. The demarcation

between high vs low load days is determined by minimizing

the variance in daily average wind and solar conditions within

each bin. The binning takes into account whether each day falls

on a weekday, weekend, or holiday so that only meteorological

effects (rather than human effects) determine which days are

deemed high vs low load days. If n days of coincident load,

wind, and solar shapes are available from the historical record

and the days are broken into m bins, this approach increases

the number of daily net load shapes that can be simulated by

the model by a factor of approximately (n/m)2 (the actual

factor depends on the sizes of each bin). One additional

benefit of the sampling approach is that each modeled day

is independent from the other days in the simulation, allowing

for parallelization to improve runtimes.

In modeling a single day’s operations, dependence on sys-

tem conditions prior to, and after, the modeled day should

be accounted for. Dependencies include unit commitment

obligations of long up or down time units, hydropower and

future large storage energy budgets, unit outages prior to the

modeled day, and potentially ramp rate constraints. To partially

capture these dependencies, we model a period before the

focus day and a period after. The appropriate length of these

periods will depend on the system modeled and the tradeoff

between model accuracy and runtime.

In addition to the long-term uncertainty in net load con-

ditions over time, the model takes into account short-term

stochastic phenomena like forecast errors and forced outages.

When each simulation day is generated, load and renewable

forecasts specific to the commitment windows being modeled,

day ahead or hour ahead for example, are either pulled from

historical forecast data or generated using statistical models.

The unit commitment problems are solved using the associated

forecasts (see Figure 2). Forced outages are incorporated via

Monte Carlo simulation by randomly drawing the outage state

in the first time step of each day based on the forced outage

rate and applying an outage/repair model (e.g. representing

the time to failure and time to repair with exponential distri-

butions) for the remaining time steps in each day.

2) Valuing Flexibility Violations and Endogenous Reserve

Scheduling: As discussed in Section III, the adapted pro-

duction simulation methodology incorporates the costs of

flexibility violations. Four types of violation are explicitly

treated in the adapted production simulation methodology:

unserved energy (UE) and overgeneration (OG) from not

meeting forecasted net load at each simulation time step,

and the costs of upward and downward flexibility violations

expected to occur within the simulation timestep (EFD+ and

EFD-). EFD violations arise when reserve levels are not

adequate to accommodate sub-timestep net load fluctuations

and/or forecast errors. While traditional production simulation
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methods might register a load following violation (in MW),

which is difficult to value, this adapted methodology will regis-

ter the expected energy shortfall (or overgeneration) within the

hour (in MWh) associated with inadequate reserves. Shortfalls

can be multiplied by their expected costs and solutions to the

shortfall can be evaluated on a cost basis. Small EFD viola-

tions may be manifested as area control error (ACE), while

larger EFD violations might actually bring about lost load.

In the simplest formulation, the user assigns each violation

a constant cost penalty that reflects the relative severity of

the violation. In more complicated formulations, non-linear

cost penalties can be included, provided that the relationship

between the cost penalty and magnitude of violation in each

timestep is monotonic and non-decreasing.

By including the EFD+ and EFD− terms in the objective

function, the model is capable of endogenous reserve schedul-

ing, which trades the cost of expected sub-timestep flexibility

violations against the cost of holding additional reserves to

avoid the violations. This method relies on the development

of response surfaces that relate the EFD+ and EFD− to the

system state. These EFD surfaces are developed prior to the

unit commitment simulation. As will be shown, the surfaces

are convex and monotonic with respect to the total MW of

reserves held and the combined MW/timestep of ramping

available from those reserves. The EFD surfaces can therefore

be represented with a series of inequality constraints in the

model formulation. The model chooses the system cost mini-

mizing solution, including the decision variables representing

a) upward and downward system reserves (res+/res−), and

b) upward and downward system ramp (ramp+/ramp−).

The EFD surfaces can be built in a number of ways. For

the case study presented in Section V, a simple high-resolution

time-sequential simulation step was performed prior to running

the full production simulation model. Within each hour of

historical data, and given the demand and renewable forecasts,

the corresponding actual 5-min demand and renewable shapes,

and characteristics of a generic set of committed units, the

simulation tracks the ability of the fleet to ramp up and down

with the net load on a 5-min basis. The fleet’s response is

limited by the aggregated minimum stable level, maximum

generation, and maximum upward and downward ramp rates,

all represented by the system res and ramp variables. The

simulation is performed over a wide range of these state

variables to build a multidimensional surface describing the

ability of various unit commitment solutions to accommodate

net load fluctuations and forecast errors.

In a real system, the EFD surface is expected to change for

each state of the system (renewable output, R, and load, L).

To reduce the number of dimensions in the EFD surface, the

res and ramp variables are normalized by the traditional load

following requirements in each time step, f(Rt, Lt), a function

of the renewable output and load, so that the same EFD upward

and downward surfaces apply to all possible system states.

Separate EFD surfaces are built for each commitment window

so that reserve levels reflect the improvement of forecasts

with decreasing forecast horizon. An example EFD surface

for upward flexibility violations in the hour-ahead market is

shown in Figure 3. This approach of parameterizing short time-

Fig. 3. Example EFD surface for upward flexibility in the hour-ahead unit
commitment problem. Color scale shows that EFD spans several orders of
magnitude.

scale operations (which cannot be resolved with traditional

production simulation) for inclusion in the unit commitment

problem may be extended to shorter time scales provided that

the user has data with high temporal resolution and an accurate

method of simulating the response of various technologies to

net load fluctuations on those time scales. Alternatively the

model can be run with pre-determined reserve constraints to

provide traditional production simulation analysis.

Note that the output of the real-time dispatch stage of the

production simulation provides the same information required

to build the EFD surface. In future analyses, the subhourly

unserved energy observed in real-time dispatch may be fed

back into the day-ahead and hour-ahead unit commitment

problem to improve the treatment of dynamically scheduled

reserves. Alternative normalization and binning schemes may

also be appropriate for each system under study.

The following model constraints show the adaptations made

to a traditional production simulation formulation. These apply

to all commitment windows. The load balance includes all

generation as well as unserved energy, overgeneration, and

renewable curtailment:
∑

i

xit +
∑

j

(Rjt − cjt) + ut − ut = Lt ∀t ∈ T (1)

Unserved energy and overgeneration are represented by

Cu ×
∑

t∈T ut and Cu ×
∑

t∈T ut in the objective function,

respectively. The cost coefficients Cu and Cu are per MWh

penalties set as inputs to the model.

The model also includes an option to economically sched-

ule and dispatch renewables in the downward direction to

meet flexibility requirements. This downward dispatchability

is incorporated into the unit commitment problem with the

renewable curtailment variable cjt :

0 ≤ cjt ≤ Rjt ∀j ∈ J, t ∈ T (2)

Where renewable curtailment introduces an additional cost in

the objective function: Cc

∑
t∈T,j∈J cjt. The renewable cur-

tailment option is exercised by setting the renewable curtail-
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TABLE I
SUMMARY OF CONVENTIONAL UNITS USED IN THE CASE STUDY, WITH OPERATING CHARACTERISTICS LISTED FOR AN AVERAGE (WEIGHTED BY

CAPACITY) UNIT OF EACH TECHNOLOGY TYPE.

Fleet Statistics Average Unit Characteristics

No. of Total Capacity No. Rescheduled Max Gen Min Gen Max Ramp Min Up Min Down Heat Rate
Technology Units (MW) in Hour-Ahead (MW) (MW) (MW/min) Time (hrs) Time (hrs) (Btu/kWh)

CCGT 61 22,833 3 374 150 4.53 6.93 6.04 7,678

CT 141 8,760 103 62.1 31.4 5.66 1.73 1.51 10,538

Cogen 90 3,867 0 43.0 42.7 0.01 8.47 8.47 (must run)

ICE 16 213 10 13.3 4.70 1.39 1.94 1.47 9,208

Nuclear 3 3,077 0 1,026 899 3.44 168 168 (must run)

ment cost, Cc, to a value that is lower than the overgeneration

penalty cost.

The total upward ramping ability of the system within the

hour is described by the variable ramp+t times a parameterized

function of the system state in terms of the forecasted demand

and available renewables (eg. the load following requirement),

f(Rt, Lt). Examples of reserve requirement functions are

described in [24]. The upward ramping capability in each

time step is incorporated into the traditional unit commitment

problem with the following constraint:

ramp+t × f(Rt, Lt) ≤
∑

i∈Iintra

[rrit − (xit+1 − xit)] ∀t ∈ T

(3)

Similarly, the upward reserves available within the hour (which

is limited by the difference between each unit’s set point

and maximum output), is described by res+t × f(X) and is

incorporated into the problem with the following constraint:

res+t × f(Rt, Lt) ≤
∑

i∈Iw
firm

∩Iintra

[

NitXi − xit

]

+
∑

i∈Iw
flex

∩Iintra

[

nitXi − xit

]

∀t ∈ T

(4)

Units with firm commitment cannot change commitment status

due to the length of their start up or shut down times, or

other constraints on their operation. Their status may be set

in the previous commitment window when start up and shut

down times are not limiting. The EFD
+ associated with each

(ramp+t , res
+
t ) policy is approximated in the model by a

piecewise linear function so that:

EFD
+
t ≥ β

f
0 ramp+t + β

f
1 res

+
t + β

f
2 ∀t ∈ T, f ∈ F+ (5)

The EFD
+ is incorporated into the objective function with a

cost term equal to CEFD+ ×
∑

EFD
+
t . The same approach is

used for downward flexibility:

ramp−t × f(Rt, Tt)) ≤
∑

i∈Iintra

[rrit + (xit+1 − xit)] ∀t ∈ T

(6)

res−t × f(Rt, Tt)) ≤
∑

i∈Iw
firm

∩Iintra

[

xit −NitXi

]

+
∑

i∈Iw
flex

∩Iintra

[

xit − nitXi

]

∀t ∈ T

(7)

EFD
−

t ≥ γ
f
0 ramp+t + γ

f
1 res

+
t + γ

f
2 ∀t ∈ T, f ∈ F− (8)

An additional cost term reflects the downward flexibility

violation cost: CEFD− ×
∑

t∈T EFD
−

t .

V. CASE STUDY

To demonstrate the functionality of the model, a case

was developed to examine flexibility challenges in California

under a high RPS. The case described in this section was

modified from the 2030 50% Large Solar Case presented in

[25] and was run on the ProMaxLTTM production simulation

platform, modified according to the formulation described in

Section IV. The study area includes the CAISO, SMUD,

and LADWP balancing areas. The case was modified for

this analysis by converting 1,088MW of CCGTs and CTs

into generic inflexible resources that operate as must-run at

the maximum generating level and can therefore provide no

ramping or reserve services. Table I summarizes the conven-

tional resources that are modeled in the case and Table II

summarizes the renewable resources. Details regarding the

modeling assumptions for imports/exports and hydropower can

be found in [25].

Input prices and cost penalties are listed in Table III.

The curtailment cost penalty depends on the system being

analyzed and the goal of the study. For a planning exercise,

the curtailment cost penalty may reflect an opportunity cost.

For example, if renewable resources are curtailed and a system

fails to meet its renewables portfolio standard or other binding

TABLE II
RENEWABLE RESOURCES IN THE 50% RPS CASE STUDY. ANNUAL

ENERGY REFERS TO AVAILABLE ENERGY, BEFORE CURTAILMENT. SOLAR

PV INCLUDES ROOFTOP PV NOT CONTRIBUTING TO THE RPS. WIND

EXCLUDES CONTRACTED OUT-OF-STATE RESOURCES.

Renewable Resource Annual Energy (GWh)

Biogas 2,133

Biomass 7,465

Geothermal 16,231

Small Hydro 4,525

Solar PV 75,829

Solar Thermal 4,044

Wind 29,948

Total 140,175
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TABLE III
INPUT COST ASSUMPTIONS FOR THE 50% RPS CASE STUDY. ALL VALUES

LISTED IN 2012$.

Cost Parameter Input Value

Natural Gas Price $6.06/MMBtu

Carbon Price $50/tCO2

Renewable Curtailment Penalty $150/MWh

Unserved Energy Penalty $39,000/MWh

EFD
+
t

Penalty $39,000/MWh

EFD
−

t
Penalty $150/MWh

target as a result, then the penalty for renewable curtailment

should reflect the cost of procuring additional resources (which

can be delivered) to meet the target. A value of $150/MWh

was selected for this cost to approximately reflect a renewable

PPA price that has been scaled up to account for curtail-

ment of incremental resources. Further discussion of system-

appropriate penalty costs is beyond the scope of this paper, and

will constitute important future work. The cost of unserved

energy was approximated as $39,000/MWh based on a load-

weighted average of the value of service by customer type as

summarized in [12].

The proposed approach was used to model both the day-

ahead and hour-ahead unit commitment, where the commit-

ment schedules for long-start units are locked in based on

the day-ahead commitment decision. Separate EFD surfaces

were built from day-ahead and hour-ahead forecasts, which

were simulated to reflect plausible forecast errors in 2030

(see [25] for more detail). The case study explores three

crucial aspects of the proposed methodology: endogenous

reserve scheduling; the application of Monte Carlo methods

to production simulation; and the economic framework for

flexible resource planning. These analyses are described below.

For this case, the parameterization, f(Rt, Lt) was calculated

for each hour using the method described in [2] for calculating

load following requirements. The cost penalties selected for

expected subhourly imbalances (EFD+ and EFD−) determine

how the model schedules reserves and should therefore reflect

real operational consequences of subhourly imbalance. It is

assumed in the case study that subhourly upward imbalances

lead to unserved energy and that subhourly downward imbal-

ances must be mitigated with real-time renewable curtailment.

The cost penalties therefore reflect the cost of unserved energy

and the cost of renewable curtailment, respectively. In practice,

some subhourly imbalance may contribute to area control

error (ACE) without serious consequence. Consideration of

ACE may be incorporated in future analyses by subtracting

an allowable (ie. unpenalized) amount of imbalance from each

EFD surface.

Because the consequences of upward imbalances are signif-

icantly more costly than downward imbalances, the optimiza-

tion chooses reserve policies that prioritize upward flexibility

at the expense of downward flexibility when the system

is flexibility constrained. This is demonstrated in Figure 4,

which shows the hourly average load following requirements

(f(Rt, Lt)) throughout the day, the available reserves sched-

uled by the model, and the resulting EFD. In general, large

EFD is observed when the scheduled reserves do not exceed

f(Rt, Lt), as shown in Figure 4(b) for downward reserves.

In the modeled scenario, which relies heavily on solar power,

thermal fleet flexibility is constrained during daytime hours,

when units shut down to accommodate large amounts of

generation from solar resources. Figure 4 shows that in these

hours, the set points of the remaining online resources are

generally low enough to provide adequate upward reserves, but

not high enough to provide adequate downward reserves. The

consequence is substantial EFD− during daytime hours, which

in this case operationally translates into real-time renewable

curtailment.

The convergence behavior of various model outputs was

investigated to inform the selection of appropriate convergence

criteria. Model outputs include expected daily values of:

operating cost, including both fuel and variable O&M costs;

renewable curtailment; upward and downward subhourly im-

balances; and total cost, including production cost, renewable

curtailment costs, and subhourly imbalance costs. For this

analysis, random days were drawn sequentially from each

Fig. 4. Average (a) upward and (b) downward reserves scheduled in hour-
ahead unit commitment for the 50% RPS case study with average EFD shown
throughout the day.

+ 

- 

(a) 

(b) 
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Fig. 5. Convergence behavior of the key model outputs in the 50% RPS
case study.

month of the year and this process was repeated until 2,000

days were drawn in total. After simulating operations on each

day, the complete set of days was used to calculate expected

annual values for each of the listed model outputs, assuming

equal weighting of all the days.

The updated relative standard error of the expected daily

model outputs (standard error divided by the sample mean)

was also calculated after each simulation day. This is shown

in Figure 5 as a function of the number of simulated days.

The analysis shows that while the expected operating cost

can be approximated to within 1% in less than 1,000 days

for the modeled system, renewable curtailment and subhourly

imbalances require longer simulations to converge. In particu-

lar, phenomena that are strongly penalized in the model, like

upward reserve shortages, may occur infrequently and there-

fore require simulation of significantly more days to achieve

the desired precision. Despite this observation, the precision

required for each model output will depend on the application.

In the application described below, only the total production

cost (including operating cost, renewable curtailment cost,

and subhourly imbalance penalties) is required to make a

determination of flexible resource value. Expected values and

standard errors are summarized for the primary model outputs

in Table IV.

To investigate the economics of flexible resource procure-

ment, the case was also run with the 1,088 MW of inflexible

units replaced with 1,088 MW of generic new flexible com-

TABLE IV
KEY MODEL OUTPUTS FOR 50% RPS CASE STUDY. ALL DOLLARS ARE

LISTED IN 2012$.

Model Output Expected Value Standard Error

Operating Cost ($million/yr) 8,403 34.3

Renewable Curtailment (GWh/yr) 13,786 294

EFD
+

t
(GWh/yr) 4.96 0.072

EFD
−

t
(GWh/yr) 1,061 12.2

TABLE V
ECONOMIC ANALYSIS OF THE VALUE OF FLEXIBILITY IN THE TEST

UNITS. ALL VALUES ARE LISTED IN 2012$. UNCERTAINTIES LISTED ARE

EQUAL TO THE STANDARD ERROR CALCULATED FROM THE SIMULATED

DISTRIBUTION OF EACH CLASS OF COSTS.

Expected Cost Test Units Test Units Cost

($million/yr) Inflexible Flexible Savings

Operations (All Units) 8, 403± 34 8, 287± 35 116.1± 49

Operations (Excluding
7, 961± 34 7, 965± 35 −4.3± 48.9

Test Units)

Renewable
2, 068± 44 1, 756± 41 312± 60

Curtailment

Subhourly Upward
193.3± 2.8 179.7± 2.7 13.5± 3.9

Imbalance (EFD
+

t
)

Subhourly Downward
159.1± 1.8 133.2± 1.6 25.9± 2.4

Imbalance (EFD
−

t
)

Total Cost (Excluding
10, 381± 31 10, 034± 29 347± 42

Test Units)

bined cycle resources (ie. two identical 544 MW units with

minimum up and down times of one hour, minimum stable

levels of 130MW, and the ability to ramp up to maximum

output in less than an hour). The model was run with both

the inflexible and flexible versions of these “Test Units” to

approximate the value of the flexibility provided by these

resources. The economic analysis, which is summarized in

Table V suggests that the flexibility of the Test Units pro-

vides up to $347million/yr of value, with an uncertainty of

$42million/yr based on the standard errors of each model

output. Note that this value does not include any operational

cost savings of the test units themselves, only cost savings

through avoided curtailment, improved subhourly operations,

and more efficient operation of the rest of the generation fleet.

For this case, approximately 90% of the flexibility value is

in avoided renewable curtailment, approximately 10% of the

value is associated with avoiding subhourly imbalances, and

there is no value associated with more efficient operation of

the rest of the generator fleet.

In future analyses, this approach can be used to quantify

the relative flexibility value of a wide range of generating

resources. A system planner could, for example, select the

resource or portfolio of resources with the lowest net cost

(fixed costs minus flexibility value as calculated above). The

completely inflexible units used in this case serve as an

economically unintuitive resource, but may be a useful base-

line that can be commonly compared to various procurement

options. An important note regarding this type of analysis is

that comparing the flexibility value of resources with similar

operating constraints and costs using this method may require

a substantial number of simulation days to ensure appropriate

levels of precision. The requisite number of simulation days

must be determined on a case-by-case basis.

The case study also highlights areas for further investigation

in the future. In this case, three additional hours were modeled

both before and after each simulation day to lessen the effects

of edge constraints on the dispatch in the simulation day.

In other analyses, this period has been increased to a full
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day on either side [26], however a more rigorous analysis of

the impact of increasing the length of these buffers has not

yet been undertaken. An additional reason for increasing the

length of each simulation relates to the modeling of resources

that are constrained over periods longer than a day. Modeling

hydropower, for example, typically requires an energy budget

constraint and imposing this constraint on a daily level poten-

tially over-constrains the flexibility of the hydropower fleet,

which has some ability to shift generation between days if

needed. Prior production simulation analyses have typically

used a simulation length of one week to account for inter-day

flexibility, but the authors know of no analysis that specifically

investigates the impacts of varying the simulation length. This

analysis is beyond the scope of the current paper, but will be

an important line of research as production simulation methods

continue to inform planning decisions.

VI. CONCLUSIONS

This paper presents a new methodology for analyzing

the economics of flexibility solutions in systems with high

penetrations of renewables. The model combines a stochastic

treatment of loads and resources with an adapted production

simulation formulation that trades the cost of holding ad-

ditional reserves against the cost of experiencing flexibility

violations. The utility of the model was illustrated with a

case study of California with a 50%RPS in 2030. The model

was used to test the value of 1,088 MW of flexible units in

the resource stack, relative to the same capacity of must-run

resources. Comparison of two runs of the model in which only

the operating characteristics of the test units were adjusted

yielded an expected annual value of $347±42 million/yr. In

real systems, the cost trade-offs will likely be between various

options, including flexible CTs, energy storage, flexible loads,

and new market mechanisms. It is also likely that some

systems that have relatively inflexible existing resources reach

lowest cost by procuring capacity beyond what would be

identified in the traditional capacity planning paradigm. This

complexity will complicate the identification of a single least

cost portfolio. However, the modeling methodology presented

in this analysis will be a useful means of comparing between

specific procurement options.

In addition to procurement and development of new market

mechanisms, renewable dispatchability via curtailment was

identified as a potential flexibility solution. The extent to

which the system operator relies on this solution will depend

on the value of delivering renewable energy relative to the

cost of experiencing flexibility violations and the costs of

other operational flexibility solutions. These trade-offs suggest

that quantification of the social cost of renewable curtailment

will be an important step in integrating larger shares of

renewable resources on to the grid. Furthermore, agreement

among stakeholders regarding the costs of reliability and

flexibility violations may be crucial to modeling operations in

future systems that seek to reliably and economically integrate

renewables.

The model presented in this paper has been commercialized

under the name REFLEX (Renewable Energy FLEXibility

model). For large systems, the REFLEX approach has been

implemented on commercial production simulation platforms

including ProMaxLTTM and PLEXOS R© to improve scalability

and runtimes as well as to incorporate more advanced mod-

eling options. The formulation can be extended to include

new functionality on a system-by-system basis. In systems

with binding transmission constraints, the formulation can be

adapted for zonal or nodal treatment. However, additional

model complexity leading to longer runtimes must ultimately

be weighed against the improvement in model accuracy.

At a high level, this analysis highlights the need for new

modeling tools to plan for systems with increasing levels of

renewable generation. The electric power industry, which has

benefited from operational experience spanning many decades,

is now faced with a rapidly changing energy supply landscape.

In the coming years, more work will need to be devoted

to planning for a low-carbon grid. This will require on-

going model development, benchmarking to new operational

experience, and flexibility on the part of all stakeholders in

adapting to new planning paradigms.
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