

Energy+Environmental Economics

C&I Rate Design for EVs

Flexible Rate Designs Bridging Private Sector and Utilities

20 June 2017

Michele Chait Director

- + Headquartered in San Francisco, founded in 1989
- Economics and grid impacts of EVs, and supporting utilities in development of EV programs
- + Long term CO2 pathways and impact of clean transportation (electric and gas)
- Large electric user rate discounts & procurement analysis to reduce costs and achieve sustainability goals

+ Electric vehicle rate design should incorporate best practices in rate design (Bonbright Principles)

- Customer understanding & ease of implementation
- Collect utility's cost of service
- Current customers pay for use of current assets
- Fairly apportion the annual cost of service among customers & avoid undue discrimination

 Balancing these principles can be an art rather than a science and can involve prioritizing policy goals

Rate Designs & EV Applications

	Example Load/Customer Types							
	Airport GSE* Flexible Charging Off-peak period	Public DCFC Inflexible Charging On-peak period						
Energy Rate Design	 TOU energy rates Dynamic rates such as SDG&E's VGI rate 	Energy-only rates						
Demand Rate Design	 High on-peak demand charges 	 Low on-peak demand charges 						

- Diverse charging profiles across EV applications means there are no universally appropriate rate designs
- However, there are universally applicable EV discount structures
 - Sharing of benefits related to increased throughput
 - Reduced charges while usage grows

Contribution to Margin (CTM) from PEV Charging Load

Revenue

Cost

- Increased throughput from electric vehicles provide downward pressure on rates & increased CTM
- + Benefit typically diminishes with customer size
 - Utility rates for small and medium-sized users are typically greater than utility's marginal costs of serving load

Energy+Environmental Economics

Example: Rate Discounts to Support Electrification

- The Port of Long Beach expects its electric usage to <u>quintuple</u> to 250 MW from 2010 to 2030 largely due to electrification
- The Port's Maritime Entity customers receive two types of electricity discounts under Southern California Edison's (SCE) Schedule ME
 - A discount of 50% of the contribution to margin (CTM) for each customer in each month:
 - CTM = customer's bill minus marginal costs * monthly usage
 - New electric infrastructure loads above 10 MW are to be supplied at 50 kV:
 - Can yield additional demand charge reductions above 2kV-50kV service

 Discounts recognize that electricity cost reductions can help support the Port's electrification program, contributing to improved air quality in region

Outside-of-the-Box Ideas BIP & Conjunctive Billing

+ Interruptible rates

- i.e, SCE's BIP program reduces generation capacity charge
- Called ~once a year
- Load factor impacts

+ Conjunctive Billing

https://campaignsoftheworld.com/outdoor/mini-outside-the-box/

- Commonly used for electrified rail, conjunctive billing calculates demand charges based on the highest combined load across all the EVSP's accounts in a utility's service area rather than at each individual location
- Results in savings if chargers are not in use simultaneously

Outside of the Box (con't) Economic Development Rates

- + Economic development rates (EDR) provide rate discounts to attract or retain commercial loads
 - PG&E EDR standard discount of 12% for 5 years
 - Enhanced EDR Option provides a 30% discount for customers located in an area with annual unemployment rate greater than 125% of state's average
 - "But For" test

Figure II-4 Disadvantaged Communities are Heavily Impacted by Air Pollution from Freight Corridors30

 Perhaps a similar structure could be applied to promote vehicle electrification in areas with poor air quality

https://www.pge.com/tariffs/tm2/pdf/ELEC_SCHEDS_EDR.pdf http://www3.sce.com/sscc/law/dis/dbattach5e.nsf/0/F5582C9D0A9A3659882580AE007F74A4/\$FILE/A1701XXX-SCE%20TE%20Testimony%201-20-17.pdf, p. 14

Example Application: DCF

+ Problem:

- DCFC typically served on C&I rates which include demand charges.
- Growing usage

+ Potential Solutions:

- EDR-style fixed % discount
- Shared throughput discount
- Reduced demand charges or energyonly rates

+ <u>Benefits:</u>

- Timing shifts costs into later years from upfront (assuming growth)
- Requires care to ensure costs are not over-recovered in later years
- Potential for stranded costs if EV charging load fails to materialize

Energy+Environmental Economics

Energy+Environmental Economics

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com

Michele Chait (michele@ethree.com)