

Pacific Northwest Low Carbon Scenario Analysis 2018 Scenarios and Sensitivities

June 2018

Arne Olson, Senior Partner Kush Patel, Partner Nick Schlag, Director Kiran Chawla, Consultant Femi Sawyerr, Associate

•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•			

- + This is a joint report to share the results of independently sponsored studies
- Each of the entities in the report independently requested and sponsored additional scenarios and sensitivities to the 2017 PGP Study
- + Some entities requested the same studies
 - Those studies were run consistently for each entity

+ Background	
+ 100% GHG Reduction S	Scenario
	Section 10
+ Climate Solutions Spon	sored Scenarios and Results
Energy+Environmental Economics	3


Background and Context

- In 2017, the Public Generating Pool (PGP) sponsored the Pacific Northwest Low Carbon Scenario Analysis, a study of alternative policies for achieving reductions in electric sector carbon emissions in the Northwest
 - The original study can be found here: <u>https://www.ethree.com/e3-</u> <u>completes-study-of-policy-mechanisms-to-decarbonize-the-electric-</u> <u>sector-in-the-northwest/</u>
- In 2018, follow-up studies were individually sponsored by three organizations to explore specific questions left unanswered by the original study

Energ	y+Environmental Economics	5
+	This document reports on the ass from these additional studies	umptions and results
	National Grid	
	 Climate Solutions 	
	 Public Generating Pool 	

Original Study Results: Cost & Emissions Impacts in 2050

Reduction in 2050 Greenhouse Gas Emissions (million metric tons)

Note: Reference Case reflects current industry trends and state policies, including Oregon's 50% RPS goal for IOUs and Washington's 15% RPS for large utilities

6

2050 Scenario Summary From the Original Study

Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Avg GHG Abatement Cost (\$/ton)	Effective RPS %	Zero Carbon %	Renewable Curtailment (aMW)	
Reference	_	_	_	20%	91%	201	
40% Reduction	+\$163	7.5	\$22	21%	92%	294	1
60% Reduction	+\$434	14.2	\$30	25%	95%	364	
80% Reduction	+\$1,046	20.9	\$50	31%	102%	546	
30% RPS	+\$330	4.3	\$77	30%	101%	313	
40% RPS	+\$1,077	7.5	\$144	40%	111%	580	
50% RPS	+\$2,146	11.5	\$187	50%	121%	1,033	
Leg Tax (\$15-75)	+\$804	19.1	\$42	28%	99%	437	
Gov Tax (\$25-61)	+\$775	18.7	\$41	28%	99%	424	i.
No New Gas	+\$1,202	2.0	\$592	22%	93%	337	ł,

Incremental cost and GHG reductions are measured relative to the Reference Case

- + PGP sponsored additional studies exploring the means for and cost of achieving additional CO2 emissions reductions beyond the 80% goal assumed in the original study:
 - 90%, 95% and 100% GHG emissions reductions with varying quantity and price of carbon-free biogas as a substitute for fossil natural gas

Climate Solutions sponsored additional studies exploring 100% GHG emissions reductions:

 With and without biogas and small modular nuclear reactors (SMR), under alternative technology costs, and with a ceiling or "off-ramp" on compliance costs

 National Grid sponsored additional studies exploring the potential role for pumped hydro storage:

 Alternative assumptions about the cost of new pumped hydro facilities and new gas-fired generation, and accelerated coal retirement

+ All scenarios assume revenue recycling

			INPUT ASS	UMPTIONS			2.7
cenario	Original Study Assumptions	Biogas P&Q Sensitivities	Alternative Technology Costs	Pumped Storage Cost Update	High Gas Capital Costs	Limited New Gas Build	
eference	٠		•	•	•	٠	
0% Reduction	•						
0% Reduction	٠						
0% Reduction	٠			•	•	•	
0% RPS	٠						
0% RPS	٠						
0% RPS	•						
eg Tax (\$15-75)	•						
ov Tax (\$25-61)	•						
o New Gas	•						
0% Reduction	•						
5% Reduction	•						
00% Reduction with Hydro, Wind Geothermal, nd Solar (HWGS)	• •						
00% Reduction + Biogas	• •	•	•				
00% Reduction + SMR	•						
00% Reduction + Off Ramp	•						

0 0 0

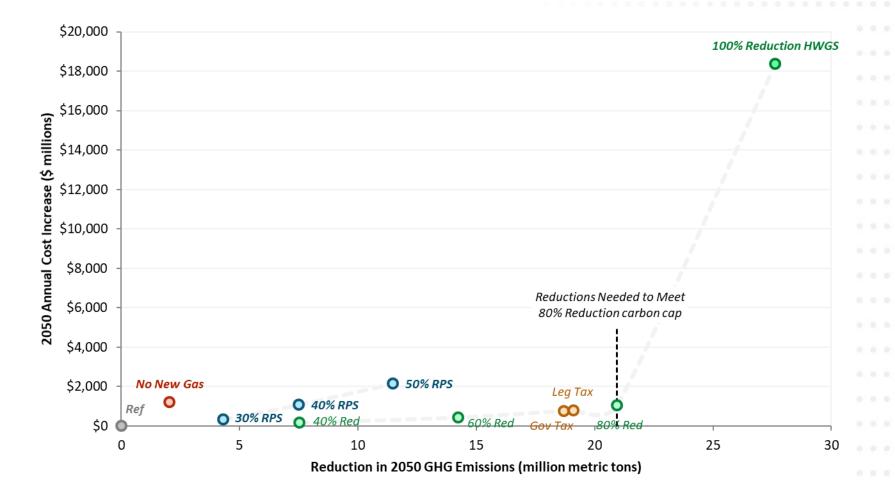
Base Cost Assumptions for Candidate Technologies

Technology	Resource	Unit	2018	2022	2026	2030
	Annual Core NW Fuel Costs	\$/MMBtu	\$3.24	\$2.95	\$3.32	\$3.82
Gas	CT-Frame	\$/kW-ac	\$950	\$950	\$950	\$950
	CCGT	\$/kW-ac	\$1,300	\$1,300	\$1,300	\$1,300
	Non Powered Dam	\$/kW-ac	\$4,500	\$4,500	\$4,500	\$4,500
Hydro Upgrades	Upgrades	\$/kW-ac	\$1,277	\$1,254	\$1,206	\$1,158
Geothermal	Central Oregon	\$/kW-ac	\$4,557	\$4,557	\$4,557	\$4,557
	Columbia River Basin	\$/kW-ac	\$1,925	\$1,910	\$1,896	\$1,882
Wind	Montana	\$/kW-ac	\$1,823	\$1,810	\$1,796	\$1,783
	Wyoming	\$/kW-ac	\$1,722	\$1,709	\$1,697	\$1,684
Color	WA/OR	\$/kW-ac	\$1,617	\$1,558	\$1,513	\$1,438
Solar	WA/OR	\$/kW-dc	\$1,244	\$1,199	\$1,164	\$1,106
Battery Storage (4-hr Storage)	-	\$/kWh	\$587	\$455	\$372	\$352
Pumped Storage (10-hr Storage)		\$/kWh	\$261	\$261	\$261	\$261

Base capital cost assumptions are the same as in the original PGP study

Capital costs are kept flat beyond 2030

100% Reduction Scenario Individually Requested by PGP and Climate Solutions



<u>S</u>	ummary 84 GW o	f new rene	ewable capa	city added	Scenar	io		Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Effective RPS %	Zero CO2 %
			eduction HW	· · · · · · · · · · · · · · · · · · ·	Refere	nce		-	-	20%	91%
	scenario				80% Re	eduction		+\$1,046	20.9	31%	102%
•			age capacity		100% F	Reduction HW	GS	+\$18,377	27.6	62%	135%
•	Gas gene 2050	eration ellr	ninated enti	irely by							
		Pocourcos /	Added (MW)					Energy Balar			
		Resources P						Lifergy Dalai		0 1 1	
	120,000				5	0,000				Curtailm DR	ent
					4	5,000				Inc EE*	
S	100,000 -				_ 4	0,000				Pumped	Storage
Installed Capacity (MW)					Generation (aMW)	5,000				Battery S	-
ity	80,000 -				n (al					Solar	
pac					itioi	0,000 -				Wind	
qCa	60,000 -				E 2	5,000				Geothern	mal
alle					2 Ger	0,000 -				Biomass	
Inst	40,000 -				Annual	5,000 -				Hydro (U	pg)
_					Ann					Hydro	
	20,000 -				- 10	0,000				Gas (CT)	
					!	5,000			•	Gas (CCG	iT)
	0 +					0				Coal	
		Reference	80% Reduction	100% Reduction HWGS		Ref	erence	80% Reduction	100% Reduction HWGS	Nuclear	
				пиисэ					110003	Load	

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan)

12

Cost & Emissions Impacts All Cases – Original PGP Study + 100% Reduction HWGS

Note: Reference Case reflects current industry trends and state policies, including Oregon's 50% RPS goal for IOUs and Washington's 15% RPS for large utilities

3

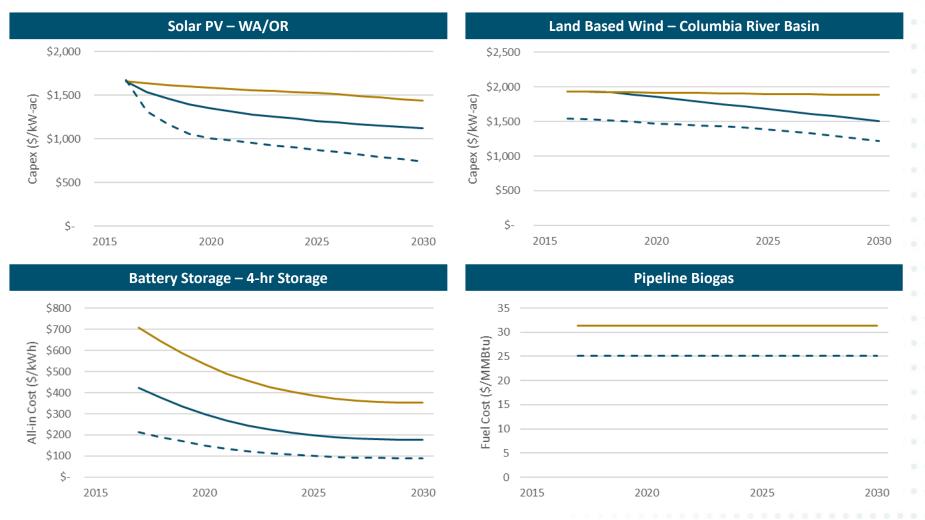
There are significant <u>reliability</u> challenges under a scenario without dispatchable thermal generation

- + The scenario considers the effect of a 100% GHG reduction cap with only hydro upgrades, wind, geothermal, solar, and electric energy storage available as new resources
- Without dispatchable thermal generation capacity, it may be difficult to meet load under extreme weather conditions
 - E.g., extended cold-weather period with low wind and solar production that occurs during a drought year
 - This challenge would only increase under a scenario with significant electrification of building and vehicle loads to meet long-term carbon goals

There are significant *modeling* challenges under a scenario without dispatchable thermal generation

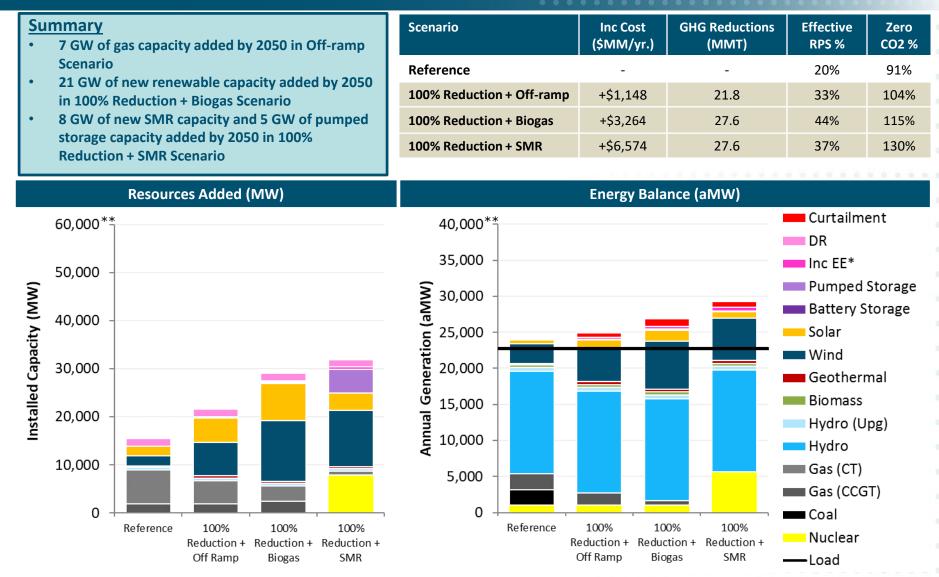
+ The current version of RESOLVE was not designed to consider cases without some form of dispatchable capacity

- The model does not provide sufficiently robust examination of unusual weather conditions that drive the need for dispatchable capacity
- The model cannot consider multi-day energy storage as a potential solution to the energy constraints that are encountered
- The model does not consider land-use or other environmental limitations on resource supply or transmission capacity
- More study is needed to examine resource availability and transmission requirements
- More study is needed to analyze whether the system as modeled meets reliability expectations


im						C		•	1	9	ł	C	Ö	e.	Š				
		3	\leq		2			U		9		9			2				

Climate Solutions Sponsored Scenarios

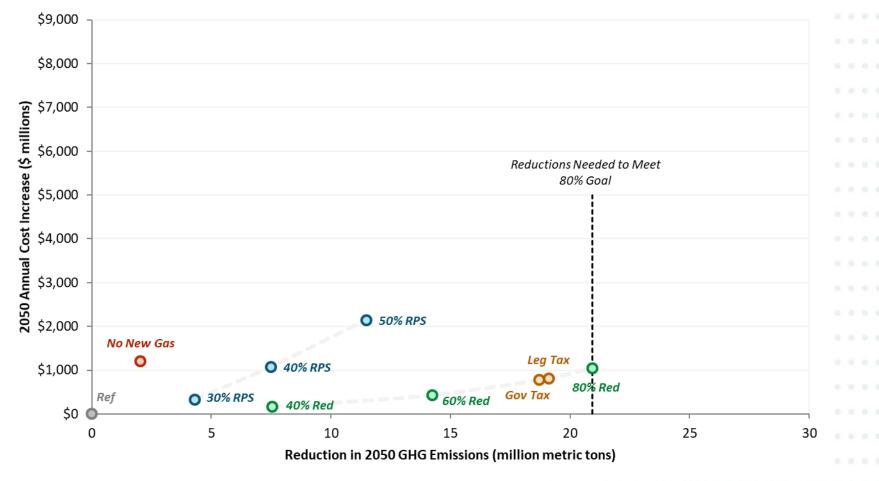
Summary of Sponsored Scenarios – Climate Solutions


Scenario Name	Question Answered	Updates to Model
100% Reduction + Off-ramp	Effect of a 100% GHG reduction target with a \$200/ton off-ramp	Added 100% GHG reduction trajectory, assuming 60% reduction by 2030 and 100% reduction by 2050. \$200/ton off-ramp in 2050
100% Reduction + Biogas	Effect of a 100% GHG reduction target with pipeline biogas as zero CO fossil resource	Added 100% GHG reduction trajectory, assuming 60% reduction by 2030 and 100% reduction by 2050. Pipeline biogas available for use in natural gas generators at \$31/MMBtu cost
100% Reduction + SMR	Effect of a 100% GHG reduction target with flexible small modular nuclear reactors	Added 100% GHG reduction trajectory, assuming 60% reduction by 2030 and 100% reduction by 2050. New nuclear candidate resource at \$100/MWh all-in cost. Retires all fossil plants in 2049
Sensitivity Name	Question Answered	Updates to Model
Alternative Technology Costs	Effect of potential technological breakthrough in cost reductions for emerging technologies	Solar PV costs updated using NREL 2017 Annual Technology Baseline (ATB)*. Relative to Base Case wind costs reduced by 20%; battery costs reduced by 70%; and biogas fuel cost reduced by 20%

*NREL 2017 Annual Technology Baseline: <u>https://atb.nrel.gov/electricity/2017/</u>

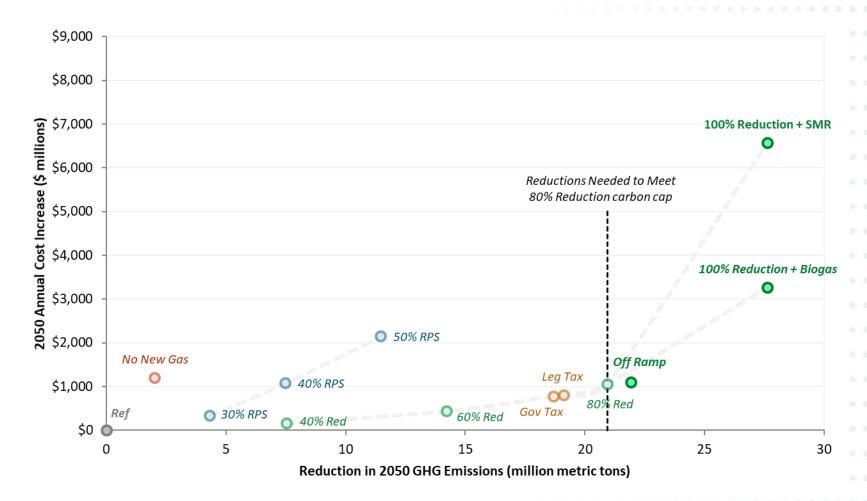
- Original PGP Study Base; - Original PGP Study Low Tech Costs; - - - Climate Solutions Alt. Tech Co

2050 Portfolio Summary – Climate Solutions Carbon Cap Scenarios


Energy+Environmental Economics

**Note the change in the Y-axis scale change

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan) 19



20

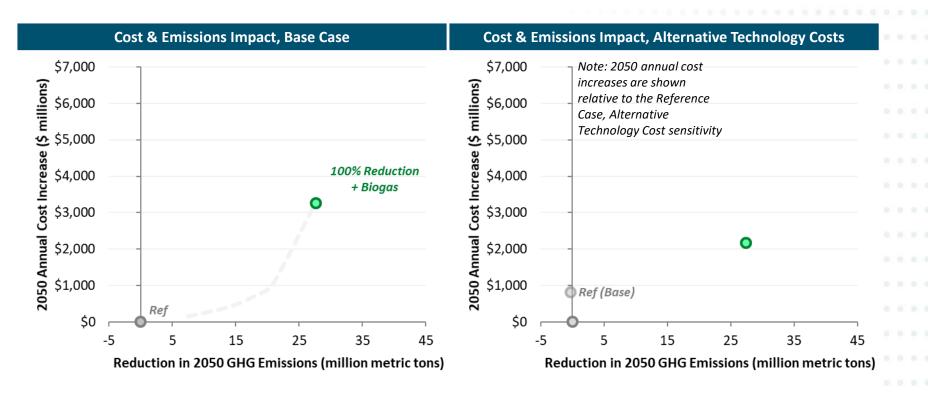
Note: Reference Case reflects current industry trends and state policies, including Oregon's 50% RPS goal for IOUs and Washington's 15% RPS for large utilities

Note: Reference Case reflects current industry trends and state policies, including Oregon's 50% RPS goal for IOUs and Washington's 15% RPS for large utilities

²¹

2050 Portfolio Summary – Climate Solutions Alternative Technology Costs Sensitivity

	CO2 %
21%	91%
47%	119%
21%	92%
47%	119%
	ent
	Storago
•	-
-	Johnge
Wind	
Geother	mal
Bio mass	
<i>,</i> , , , , , , , , , , , , , , , , , ,	Jpg)
)
Load	
	21% 47% Curtailm DR Inc EE* Pumped Battery S Solar Wind Geother Biomass Hydro (U Hydro Gas (CT) Gas (CC) Coal Nuclear


Energy+Environmental Economics

****Note the change in the Y-axis scale change**

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan)

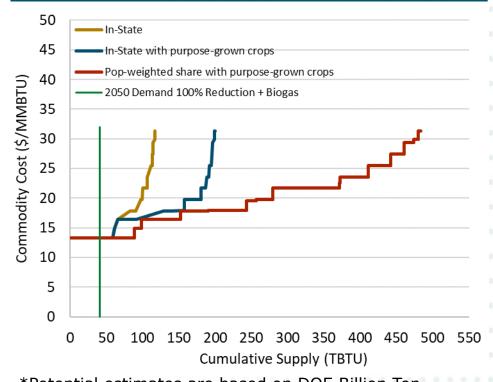
 Alternative Technology Costs Sensitivity reduces the incremental cost of meeting the 100% reduction carbon cap target by \$1 billion

2050 Summary of Results from Climate Solutions Sponsored Scenarios

Scenario	lnc Cost (\$MM/yr.)	GHG Reductions (MMT)	Avg GHG Abatement Cost (\$/ton)	Effective RPS %	Zero Carbon %	Renewable Curtailment (aMW)
Original Study Assumptions						
Reference	—	—	—	20%	91%	201
100% Reduction + Off-ramp	+\$1,148	21.8	\$53	33%	104%	591
100% Reduction + Biogas	+\$3,264	27.6	\$118	44%	115%	1,082
100% Reduction + SMR	+\$6,574	27.6	\$238	37%	130%	852
Climate Solutions Alternative Te	chnology Cost S	ensitivity				
Reference	+\$818	-0.3	_	20%	91%	201
Reference	_	_	_	21%	92%	277
100% Reduction + Biogas	+\$2,165	27.3	\$79	47%	119%	1,354
Incremental cost and GHG reduc	tions are measu	ired relative to th	ne respective Refere	ence cases		
Negative GHG reductions value	means emissions	s are higher relat	ive to the reference	e scenario		

											2	4		

Summary of GHG Reductions from Climate Solutions Sponsored Scenarios


Scenario	Unit	2020	2030	2040	2050					
Original Study Assumptions										
100% Reduction + Off-ramp	MMtCO2	1.3	11.3	18.6	21.8					
100% Reduction + Biogas	MMtCO2	1.3	11.3	18.6	27.6	6				
100% Reduction + SMR	MMtCO2	1.3	11.3	18.6	27.6					
Climate Solutions Alternative Technology Cost Sensitivity										
100% Reduction + Biogas	MMtCO2	1.8	11.6	18.8	27.3	. 0				

GHG reductions are measured relative to the respective Reference cases

25

Pipeline Biogas Potential Assumptions

- The pipeline biogas consumed in the 100% Reduction + Biogas base scenario is about a third of the combined Oregon and Washington in-state potential
 - Assumes no purpose-grown crops
 - Assumed market price of \$31/MMBtu reflects other uses
 - Pipeline biogas potential available for use in electricity sector requires more study

Estimated 2040 Oregon and Washington Biomethane Potential

*Potential estimates are based on DOE Billion Ton Study Update of 2016:

https://www.energy.gov/eere/bioenergy/2016-billionton-report

Reliability analysis is needed for energy limited systems with high levels of storage as a capacity resource

- Thermal fleet retirements in 100% GHG reductions scenarios coupled with load growth create a need for replacement capacity to ensure resource adequacy
 - In the alternative technology costs scenarios the primary source of capacity added is <u>energy storage</u> (pumped hydro & batteries)
- Storage provides capacity to help meet peak demands <u>but</u> does not generate energy that is needed during low hydro years or multi-day low generation events
- More study is needed to analyze whether systems with significant storage capacity as modeled meet reliability expectations
 - The alternative technology costs scenarios meet the current reserve margin requirement with the addition of new energy storage (1 MW of 10-hr storage capacity is assumed equivalent to 1 MW of natural gas capacity)
 - However, it is unclear how much energy storage can contribute to Resource Adequacy in the Pacific Northwest

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com

Arne Olson, Senior Partner (arne@ethree.com) Kush Patel, Partner (kushal.patel@ethree.com) Nick Schlag, Director (nick@ethree.com) Kiran Chawla, Consultant (kiran@ethree.com) Femi Sawyerr, Associate (femi@ethree.com)