

Pacific Northwest Low Carbon Scenario Analysis 2018 Scenarios and Sensitivities

June 2018

Arne Olson, Senior Partner Kush Patel, Partner Nick Schlag, Director Kiran Chawla, Consultant Femi Sawyerr, Associate

•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•			

- + This is a joint report to share the results of independently sponsored studies
- Each of the entities in the report independently requested and sponsored additional scenarios and sensitivities to the 2017 PGP Study
- + Some entities requested the same studies
 - Those studies were run consistently for each entity

+ Background

+ National Grid Sponsored Scenarios and Results

												2	
												3	


Background and Context

- In 2017, the Public Generating Pool (PGP) sponsored the Pacific Northwest Low Carbon Scenario Analysis, a study of alternative policies for achieving reductions in electric sector carbon emissions in the Northwest
 - The original study can be found here: <u>https://www.ethree.com/e3-</u> <u>completes-study-of-policy-mechanisms-to-decarbonize-the-electric-</u> <u>sector-in-the-northwest/</u>
- In 2018, follow-up studies were individually sponsored by three organizations to explore specific questions left unanswered by the original study

Energ	y+Environmental Economics	5
+	This document reports on the ass from these additional studies	sumptions and results
	National Grid	
	 Climate Solutions 	
	 Public Generating Pool 	

Original Study Results: Cost & Emissions Impacts in 2050

Reduction in 2050 Greenhouse Gas Emissions (million metric tons)

Note: Reference Case reflects current industry trends and state policies, including Oregon's 50% RPS goal for IOUs and Washington's 15% RPS for large utilities

6

2050 Scenario Summary From the Original Study

Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Avg GHG Abatement Cost (\$/ton)	Effective RPS %	Zero Carbon %	Renewable Curtailment (aMW)	
Reference	_	_	_	20%	91%	201	
40% Reduction	+\$163	7.5	\$22	21%	92%	294	1
60% Reduction	+\$434	14.2	\$30	25%	95%	364	
80% Reduction	+\$1,046	20.9	\$50	31%	102%	546	
30% RPS	+\$330	4.3	\$77	30%	101%	313	
40% RPS	+\$1,077	7.5	\$144	40%	111%	580	
50% RPS	+\$2,146	11.5	\$187	50%	121%	1,033	
Leg Tax (\$15-75)	+\$804	19.1	\$42	28%	99%	437	
Gov Tax (\$25-61)	+\$775	18.7	\$41	28%	99%	424	i.
No New Gas	+\$1,202	2.0	\$592	22%	93%	337	ł,

Incremental cost and GHG reductions are measured relative to the Reference Case

- + PGP sponsored additional studies exploring the means for and cost of achieving additional CO2 emissions reductions beyond the 80% goal assumed in the original study:
 - 90%, 95% and 100% GHG emissions reductions with varying quantity and price of carbon-free biogas as a substitute for fossil natural gas

Climate Solutions sponsored additional studies exploring 100% GHG emissions reductions:

 With and without biogas and small modular nuclear reactors (SMR), under alternative technology costs, and with a ceiling or "off-ramp" on compliance costs

 National Grid sponsored additional studies exploring the potential role for pumped hydro storage:

 Alternative assumptions about the cost of new pumped hydro facilities and new gas-fired generation, and accelerated coal retirement

+ All scenarios assume revenue recycling

			INPUT ASS	UMPTIONS			2.7
cenario	Original Study Assumptions	Biogas P&Q Sensitivities	Alternative Technology Costs	Pumped Storage Cost Update	High Gas Capital Costs	Limited New Gas Build	
eference	٠		٠	•	•	٠	
0% Reduction	•						
0% Reduction	•						
0% Reduction	٠			•	•	•	
0% RPS	٠						
0% RPS	٠						
0% RPS	•						
eg Tax (\$15-75)	•						
ov Tax (\$25-61)	•						
o New Gas	•						
0% Reduction	•						
5% Reduction	•						
00% Reduction with Hydro, Wind Geothermal, nd Solar (HWGS)	• •						
00% Reduction + Biogas	• •	•	•				
00% Reduction + SMR	•						
00% Reduction + Off Ramp	•						

0 0 0

Base Cost Assumptions for Candidate Technologies

Technology	Resource	Unit	2018	2022	2026	2030
	Annual Core NW Fuel Costs	\$/MMBtu	\$3.24	\$2.95	\$3.32	\$3.82
Gas	CT-Frame	\$/kW-ac	\$950	\$950	\$950	\$950
	CCGT	\$/kW-ac	\$1,300	\$1,300	\$1,300	\$1,300
	Non Powered Dam	\$/kW-ac	\$4,500	\$4,500	\$4,500	\$4,500
Hydro Upgrades	Upgrades	\$/kW-ac	\$1,277	\$1,254	\$1,206	\$1,158
Geothermal	Central Oregon	\$/kW-ac	\$4,557	\$4,557	\$4,557	\$4,557
	Columbia River Basin	\$/kW-ac	\$1,925	\$1,910	\$1,896	\$1,882
Wind	Montana	\$/kW-ac	\$1,823	\$1,810	\$1,796	\$1,783
	Wyoming	\$/kW-ac	\$1,722	\$1,709	\$1,697	\$1,684
Color	WA/OR	\$/kW-ac	\$1,617	\$1,558	\$1,513	\$1,438
Solar	WA/OR	\$/kW-dc	\$1,244	\$1,199	\$1,164	\$1,106
Battery Storage (4-hr Storage)	-	\$/kWh	\$587	\$455	\$372	\$352
Pumped Storage (10-hr Storage)		\$/kWh	\$261	\$261	\$261	\$261

Base capital cost assumptions are the same as in the original PGP study

Capital costs are kept flat beyond 2030

National G	ri(C					n n								
				8							•				
al Economics															

Summary of Sponsored Scenarios – National Grid

Scenario Name	Question Answered	Updates to Model
30% RPS with Coal Retirement	Effect of a 30% RPS combined with a forced retirement of coal generators	Retires all coal generators in 2030

Sensitivity Name	Question Answered	Updates to Model
Low Pumped Storage Capital Costs (Low PS Capex)	What capacity of pumped storage resources are selected when costs are updated using Swan Lake facility capital costs	Updated pumped storage capital cost
Low Pumped Storage Capital	What capacity of pumped storage resources	Updated pumped storage capital cost.
Costs & High Gas Capital Costs	are selected when, building on the Low PS	Updated natural gas resource capital cost
(Low PS Capex & High Gas	Capex sensitivity, the capital cost of a gas	using the final capital cost value for the
Capex)	facility is increased	Carty Generating Station
Low Pumped Storage Capital	What capacity of pumped storage resources	Updated pumped storage capital cost.
Costs & Limited New Gas Build	are selected when, building on the Low PS	Constrain build of new gas units to
(Low PS Capex & Limited New	Capex sensitivity, you constrain the build of	repowering of CCGT units and 1000 MW of
Gas)	new gas units	CT every decade

2050 Portfolio Summary – National Grid Low Pumped Storage Capital Costs

<u>Su</u>	Immary <u>8 MW</u> of pumped storage capacity is added by	Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Effective RPS %	Zero CO2 %
	2050 in the Reference Scenario 22 MW of pumped storage capacity is added by	Reference (Low PS Capex)	-	-	20%	91%
	2050 in the 80% Reduction Scenario 52 MW of pumped storage capacity is added by	80% Reduction (Low PS Capex)	+\$1,047	20.9	31%	102%
	2050 in the 30% RPS with Coal Retirement Scenario	30% RPS with Coal Retirement (Low PS Capex)	+\$1,139	18.3	30%	101%
	Resources Added (MW)		Energy Bala	nce (aMW)		
	60,000**	40,000**			Curtailm	ent
S	50,000 -	35,000			DR Inc EE* Pumped	Storage
۲V M	40.000	30,000 - M			Battery S	-
acity	40,000	u 25,000			Solar	
Installed Capacity (MW)	30,000 -	Annual Generation 30,000 25,000 25,000 15,000 10,000 10,000	·······		Wind Geotherr	mal
allec		<u>15,000</u>			Biomass	
Inst	20,000				Hydro (U	pg)
	10,000 -	ų 10,000 –			Hydro Gas (CT)	
		5,000			Gas (CCG	iT)
	0	0			Coal	
	Reference 80% Reduction 30% RPS with Coal Retirement	Reference	80% Reduction	Coal Retirement	Nuclear	
		Nelefelite	Sove neutron	Coal Retirement	Load	

Energy+Environmental Economics

**Note the change in the Y-axis scale change

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan)

13

2050 Portfolio Summary – National Grid Low Pumped Storage Capital Costs & High Gas Capital Costs

<u>Su</u>	Immary 2 GW of pumped storage capacity is added by	Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Effective RPS %	Zero CO2 %
	2050 in the Reference Scenario 1.6 GW of pumped storage capacity is added by	Reference (Low PS & High Gas Capex)	-	-	20%	91%
	2050 in the 80% Reduction Scenario 2.3 GW of pumped storage capacity is added by	80% Reduction (Low PS & High Gas Capex)	+\$1,028	21.1	31%	102%
	2050 in the 30% RPS with Coal Retirement Scenario	30% RPS with Coal Retirement (Low PS & High Gas Capex)	+\$1,170	18.4	30%	101%
	Resources Added (MW)		Energy Bala	nce (aMW)		
	60,000**	40,000**			Curtailm	ent
6	50,000 -	35,000 -		 	DR Inc EE*	
MM)		30,000			Pumped Battery S	-
city	40,000	<u>e</u> 25,000			Solar	toruge
Installed Capacity (MW)	30,000	Annual Generation (aMM) 25,000 25,000 15,000 15,000 10,000			Wind	
alled		9 15 000			Geotheri Biomass	mal
Insta	20,000				Hydro (U	pg)
		Ū 10,000			Hydro	
	10,000	5,000 -			Gas (CT) Gas (CCG	; Τ)
		0			Coal	· · /
	Reference 80% Reduction 30% RPS with Coal Retirement	Reference	80% Reduction	Coal Retirement	Nuclear — Load	

Energy+Environmental Economics

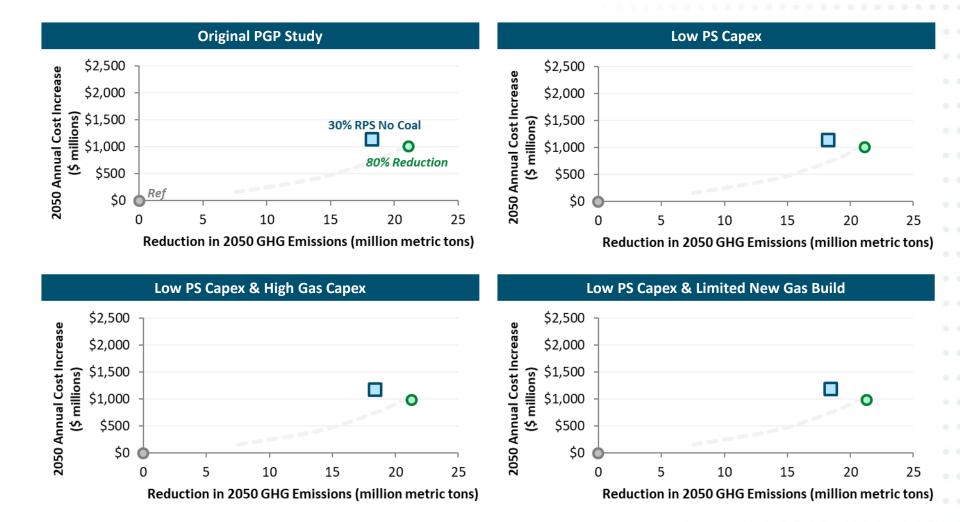
******Note the change in the Y-axis scale change

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan)

14

2050 Portfolio Summary – National Grid Low Pumped Storage Capital Costs & Limited New Gas Build

<u>Su</u>	immary 3 GW of p	oumped storage capacity is	s added by	Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Effective RPS %	Zero CO2 %
		ne Reference Scenario Sumped storage capacity is	s added by	Reference (Low PS & Limited New Gas)	-	-	20%	91%
	2050 in th	ne 80% Reduction Scenario f pumped storage capacity		80% Reduction (Low PS & Limited New Gas)	+\$1,030	21.1	31%	102%
		ne 30% RPS with Coal Reti		30% RPS with Coal Retirement (Low PS & Limited New Gas)	+\$1,181	18.4	30%	101%
		Resources Added (MW)			Energy Bala	nce (aMW)		
	60,000**			40,000**			Curtailm	ent
6	50,000 -			35,000 -		 	DR Inc EE*	
MΜ				3 0,000			Pumped Battery S	-
acity	40,000 -			le 25,000 -			Solar	toruge
Installed Capacity (MW)	30,000 -			Annual Generation (aMW) 25,000 20,000 15,000 10,000 10,000			Wind Geotheri	mal
stalle	20,000 -			<u>9</u> 15,000			Biomass	
ä	20,000			10,000			Hydro (U Hydro	pg)
	10,000 -			5,000			Gas (CT)	
							Gas (CCG	iT)
	0 +	Reference 80% Reduction	30% RPS with Coal Retirement	0 + Reference	80% Reduction	Coal Retirement	Nuclear Load	


Energy+Environmental Economics

******Note the change in the Y-axis scale change

* EE shown here is incremental to efficiency included in load forecast (based on NWPCC 7th Plan)

15

Cost & Emissions Impact – National Grid All Sensitivities

2050 Summary of Results from National Grid Additional Scenarios

Scenario	Inc Cost (\$MM/yr.)	GHG Reductions (MMT)	Avg GHG Abatement Cost (\$/ton)	Effective RPS %	Zero Carbon %	Renewable Curtailment (aMW)		
Original Study Assumption	ns							
Reference	_	_	_	20%	91%	201		
80% Reduction	+\$1,046	20.9	\$50	31%	102%	546		
30% RPS No Coal	+\$1,139	18.3	\$62	30%	101%	313		
Low Pumped Storage Capital Costs								
Reference	—	—	—	20%	91%	192		
80% Reduction	+\$1,047	20.9	\$50	31%	102%	504		
30% RPS No Coal	+\$1,139	18.3	\$62	30%	101%	297		
Low Pumped Storage Capi	ital Costs & High	Gas Capital Costs						
Reference	_	—	—	20%	91%	205		
80% Reduction	+\$1,028	21.1	\$49	31%	102%	487		
30% RPS No Coal	+\$1,170	18.4	\$64	30%	101%	287		
Low Pumped Storage Capital Costs & Limited New Gas Build								
Reference	_	_	_	20%	91%	210		
80% Reduction	+\$1,030	21.1	\$49	31%	102%	492		
30% RPS No Coal	+\$1,181	18.4	\$64	30%	101%	292		

Incremental cost and GHG reductions are measured relative to the respective Reference cases

Summary of Selected Pumped Storage Capacity Results

Scenario	2020	2030	2040	2050
Original Study Assumptions				
Reference	_	_	_	_
80% Reduction	_	_	_	_
30% RPS No Coal	_	_	_	_
Low Pumped Storage Capital Costs				
Reference	—	_	—	8
80% Reduction	—	—	—	22
30% RPS No Coal	—	—	—	52
Low Pumped Storage Capital Costs	& High Gas Capital Costs			
Reference	—	655	1,051	2,010
80% Reduction	—	666	820	1,690
30% RPS No Coal	—	762	1,001	2,342
Low Pumped Storage Capital Costs	& Limited New Gas Build			
Reference	—	_	274	3,054
80% Reduction	—	—	21	1,184
30% RPS No Coal	—	_	2,067	4,456

Incremental cost and GHG reductions are measured relative to the respective Reference cases

Reliability analysis is needed for energy limited systems with high levels of storage as a capacity resource

+ Thermal fleet retirements coupled with load growth create a need for replacement capacity to ensure resource adequacy

- In the limited gas scenario and when gas capital costs are assumed to be high, pumped storage is added as a capacity resource
- Storage provides capacity to help meet peak demands <u>but</u> <u>does not generate energy</u> that is needed during low hydro years or multi-day low generation events
- More study is needed to analyze whether systems with significant storage capacity as modeled meet reliability expectations
 - 1 MW of 10-hr storage capacity is assumed equivalent to 1 MW of natural gas capacity
 - However, it is unclear how much energy storage can contribute to Resource Adequacy in the Pacific Northwest

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com

Arne Olson, Senior Partner (arne@ethree.com) Kush Patel, Partner (kushal.patel@ethree.com) Nick Schlag, Director (nick@ethree.com) Kiran Chawla, Consultant (kiran@ethree.com) Femi Sawyerr, Associate (femi@ethree.com)