CARNEGIE INSTITUTION FOR SCIENCE

Postdoctoral Research Scientist

- Modeled and analyzed near-zero-emission energy systems to inform investment and policymaking (Adviser: Dr Ken Caldeira)
- Attended and provided logistical support for the international workshop, "Energy for Development in a Carbon-constrained World (EDC2018)"

STANFORD UNIVERSITY

Graduate Researcher

- Investigated techno-economic modeling and optimization of membrane separation processes for CO₂ capture from coal and natural gas power systems
- Performed ex-situ and operando characterization (XPS, SEM, XRD) of metallic membrane materials for carbon capture and hydrogen purification

NATURAL RESOURCES DEFENSE COUNCIL

Schneider Fellow

- Co-authored, edited, and translated (English/Chinese) policy reports on demand-side management, electric vehicles, and renewable energy integration for stakeholders
- Assisted in organizing conferences and workshops for policymakers, industry leaders, and researchers

January 2018 - May 2019

April 2013 – January 2018

San Francisco, CA

Senior Consultant

Dr. Yuan joined E3 in 2019 after conducting postdoctoral research through the Carnegie Institution for Science that modeled and analyzed near-zero-emission energy systems. She completed her Ph.D. in Energy Resources Engineering from Stanford University in 2018. Her doctoral research, published in the International Journal of Greenhouse Gas Control, investigated membrane-based carbon capture from a natural gas power plant with flexible electricity output. Dr. Yuan brings with her both an extensive research background in energy systems modeling and analysis, and a fluency with technical tools including Python, MATLAB, and R. She primarily works in E3's planning group, where she helps utilities, system operators, and state agencies prepare for a high renewables future. Dr. Yuan, a native speaker of Mandarin Chinese, also earned a BEng from the Hong Kong University of Science and Technology and an M.S. in Environmental Engineering and Science from Stanford University.

mengyao.yuan@ethree.com

ENERGY AND ENVIRONMENTAL ECONOMICS, INC.

Mengyao Yuan, Ph.D.

44 Montgomery Street, Suite 1500, San Francisco, CA 94104

Stanford, CA

Beijing, CHINA Summer 2015

Stanford, CA

CARBON RECYCLING INTERNATIONAL

Research & Development Intern

- Developed Excel models to evaluate lifecycle emissions of various renewable methanol production pathways
- Conducted country-level case studies and made recommendations for potential plant locations

STANFORD ENVIRONMENTAL CONSULTING

Consultant

Conducted lifecycle assessment of several recyclable products using SimaPro and Excel

INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE (ITRI)

Research Intern

- Conducted a literature review on metal-organic frameworks (MOFs) and received laboratory training in MOF synthesis and characterization
- Performed process modeling and identified membrane materials suitable for oxygen enrichment

Education

Stanford University	Stanford, CA
Ph.D., Energy Resources Engineering	2018
M.S., Environmental Engineering and Science	2013
The Hong Kong University of Science and Technology	Hong Kong
BEng, Chemical Engineering (with First Class Honors)	2011

Citizenship

China

Peer-Reviewed Publications

- 1. Yuan, M., H. Teichgraeber, J. Wilcox, and A.R. Brandt. 2019. "Design and operations optimization of membrane-based flexible carbon capture." International Journal of Greenhouse Gas Control 84: 154-163.
- 2. Yuan, M., K. Lee, D.G. Van Campen, S. Liguori, M.F. Toney, and J. Wilcox. 2018. "Hydrogen purification in palladium-based membranes: An operando x-ray diffraction study." Industrial & Engineering Chemistry Research 58(2): 926–34.
- 3. Yuan, M., S. Liguori, K. Lee, D.G. Van Campen, M.F. Toney, and J. Wilcox. 2017. "Vanadium as a potential membrane material for carbon capture: Effects of minor flue gas species." *Environmental Science & Technology* 51(19): 11459–67.

Reykjavik, ICELAND Summer 2013

Stanford, CA

April 2012 – April 2013

Hsinchu, TAIWAN Summer 2012

- Tsai, C., K. Lee, J.S. Yoo, [et al., including M. Yuan], J. Wilcox, and J.K. Nørskov. 2016. Direct water decomposition on transition metal surfaces: Structural dependence and catalytic screening." *Catalysis Letters* 146(4): 718–24.
- Lee, K., M. Yuan, and J. Wilcox. 2015. "Understanding deviations in hydrogen solubility predictions in transition metals through first-principles calculations." *Journal of Physical Chemistry C* 119(34): 19642–53.
- 6. **Yuan, M.**, K. Narakornpijit, R. Haghpanah, and J. Wilcox. 2014. "Consideration of a nitrogenselective membrane for postcombustion carbon capture through process modeling and optimization." *Journal of Membrane Science* 465: 177–84.