

# Capacity Needs of the Pacific Northwest—2019 to 2030

December 2019



### + Project Background

- + Key Takeaways
- + Analysis
  - Key policy drivers and resource adequacy approach
  - Near-term view
  - Mid-term view
  - Long-term view

## + Appendix



- E3 analyzed a fundamentals-based view of the Pacific Northwest (PacNW) regional capacity need and generated this public report on behalf of Rye Development
- + Study Approach
  - Top down view: Compares regional level studies on capacity need, which included updating a previous E3 study based on latest public information and comparing it against other regional studies
  - Bottom up view: Aggregates capacity need and planned additions from utility integrated resource plans (IRPs) across the region
  - The study region is defined as the "Greater NW," consisting of the US portion of the Northwest Power Pool, excluding Nevada
    - Other studies of regional need utilizing smaller regions are noted
- + The views contained herein are solely those of the authors and based on public information as well as E3's analysis for its own study





## Key Takeaways



## The PacNW is Facing a Significant Capacity Shortfall

- + <u>Near-term (today-2025)</u>: the Pacific Northwest faces a near-term capacity shortfall of 3-7 GW
- + <u>Mid-term (2025-2030)</u>: capacity need grows to as much as 10 GW as additional firm capacity retires and this need is not fully replaced by planned additions
  - All planned capacity additions, and significantly more, are required by 2030
  - Even in an optimistic scenario (if all planned capacity additions detailed in the reviewed utility IRPs are approved and constructed), the region remains approximately 3 GW short by 2030
- Long-term (2030-2050): the region needs to grow or maintain firm dispatchable capacity to address the energy sufficiency challenges created by a deeply decarbonized grid

|                      |                  | Near-term<br>(today-2025)                                                                                                                                                   | Mid-term<br>(2025-2030)                                                                                                                                                                 | Long-term<br>(2030-2050)                                                                                                                                                                                                                                                            |
|----------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pacific<br>Northwest | Capacity<br>Need | Immediate capacity<br>shortfall of 0-1.2 GW,<br>rising to 3-7 GW by 2025                                                                                                    | Growing capacity shortfall<br>of ~10 GW in 2030 (higher if<br>more coal retires than<br>currently planned for)                                                                          | Capacity shortfall grows to<br>~20 GW by 2050, possibly<br>even higher under high<br>electrification scenarios                                                                                                                                                                      |
|                      | Key<br>Drivers   | <ul> <li>Increasing winter and<br/>summer peak demand</li> <li>Coal retirements w/ few<br/>firm replacements</li> <li>Consideration of a<br/>regional RA program</li> </ul> | <ul> <li>Continued load growth and coal retirements</li> <li>Renewable and storage additions with diminishing capacity benefit</li> <li>Additional capacity additions needed</li> </ul> | <ul> <li>Energy sufficiency-based<br/>reliability planning<br/>challenge</li> <li>Decarbonization policies<br/>further drive renewables/<br/>storage; do not avoid need<br/>for firm capacity</li> <li>Electrification loads could<br/>drive even higher winter<br/>peak</li> </ul> |



 Multiple regional assessments point to a near-term shortfall of winter-peaking physical capacity in the Northwest region



Shortfall grows to ~5,000-10,000 MW over next 10 years

- Key differences are driven by PRM requirements, capacity counting methodologies, and resource additions (see appendix for comparison of key assumptions).
- E3 and NWPCC are truly "top-down" stochastic views, while PNUCC and BPA are closer to regional "bottom-up" analyses of utility IRPs.
- E3 study based on 2018 and 2030 RECAP LOLE modeling, shaped between those years based on forecasted coal-retirement schedules. This study updated previous analysis to include coal retirements from PacifiCorp's 2019 Draft IRP. E3's need does not incorporate any planned additions.

### PacNW Near to Mid-Term Capacity Need Bottom-Up Capacity Need vs. Planned Additions

- + Through their IRPs, individual utilities have identified their capacity needs over a 20-year horizon
  - Aggregate "bottom-up" need reaches ~10,000 MW by 2030
  - IRP planned additions do not adequately address full capacity need, leaving ~3,000 MW of additional need



**Summary of Utility IRP-based Capacity Needs** 

\*E3 also considered Grant, Chelan, and Douglas Counties but they do not report a shortage in capacity

## **PacNW Capacity Need vs. Planned Additions**



Note: E3 top-down assessment utilizes RECAP modeling results from E3's 2019 study <u>Resource Adequacy in the Pacific Northwest</u>. This study further shapes the annual capacity need based on the latest proposed coal retirements schedules (as of Oct 2019). E3's capacity deficit does not include any planned additions.



## PacNW Capacity Need Drivers and Analysis



## **PacNW Key Policy Drivers**

## + Coal retirements are driven by policy, planning, and politics

- 4.5 GW by 2030
- + Clean energy legislation and voluntary goals are expanding
  - WA/OR coal prohibitions
  - WA 100% carbon-free by 2045 -OR may follow
  - Idaho Power voluntary goal of 100% clean energy by 2045

### Economy-wide GHG reductions will drive additional impacts

 Electrification of transportation and building loads may significantly increase peak loads



## **PacNW Resource Adequacy Approach**

## + The Northwest has no existing regional RA program

• There are independent regional RA assessments (BPA, PNUCC, etc.), but no regulatory program to coordinate RA planning and procurement

### + Reliability planning done through utility IRPs

- Lack of consistency in assumptions (e.g. load growth, capacity contributions)
- Lack of consistency in reliability standards (e.g. PRM vs. LOLE vs. other reliability metrics)

### + Top-down view of regional need may not match the bottom-up (IRP-based) view

- Reliance in IRPs on market purchases (aka frontoffice transactions) may lead to double counting
- The region (led by the Northwest Power Pool) is considering developing a regional RA program





Source: PNUCC 2019 Northwest Regional Forecast

### **PacNW Existing Resources** 2018

| Load + Resource Balance (Greater NW = WA, OR, ID, parts of UT, WY) |              |             |              |  |
|--------------------------------------------------------------------|--------------|-------------|--------------|--|
| Load                                                               |              |             | Load GW      |  |
| Peak Load                                                          |              |             | 42.1         |  |
| Firm Exports                                                       |              |             | 1.1          |  |
| PRM (12%)                                                          |              |             | 5.2          |  |
| Total Requirement                                                  |              |             | 48.4         |  |
| Resources                                                          | Nameplate GW | Effective % | Effective GW |  |
| Coal                                                               | 10.9         | 100%        | 10.9         |  |
| Gas                                                                | 12.2         | 100%        | 12.2         |  |
| Biomass & Geothermal                                               | 0.6          | 100%        | 0.6          |  |
| Nuclear                                                            | 1.2          | 100%        | 1.2          |  |
| Demand Response                                                    | 0.6          | 50%         | 0.3          |  |
| Hydro                                                              | 35.2         | 53%         | 18.7         |  |
| Wind                                                               | 7.1          | 7%          | 0.5          |  |
| Solar                                                              | 1.6          | 12%         | 0.2          |  |
| Storage                                                            | 0            | —           | 0            |  |
| Total Internal Generation                                          | 69.1         |             | 44.7         |  |
| Firm Imports                                                       | 3.4          | 74%         | 2.5          |  |
| Total Supply                                                       | 72.5         |             | 47.2         |  |
| Surplus/Deficit                                                    |              |             |              |  |
| Capacity Surplus/Deficit                                           |              |             | -1.2         |  |

Source: E3 Resource Adequacy in the Pacific Northwest, 2019

Note: other top-down analyses (e.g. NWPCC) suggest need starting in the 2020-2021 timeframe.





## PacNW Near-Term Capacity Need Key Drivers

- A combination of departing industrial loads, generation additions, and sustained attention to energy efficiency left the Northwest with excess capacity for nearly two decades
- + Two key drivers of the Northwest's capacity challenges have been identified in recent studies:
  - 1. Thermal (largely coal) resource retirements
  - 2. Peak load growth
- Both trends are expected to continue across the West as states and provinces continue to pursue decarbonization of both the economy and the electric supply



#### WECC Coal Retirement Scenarios (cumulative)



## PacNW Near-Term Capacity Need

#### Winter vs. Summer Needs

### + PacNW is a winter peaking region\*

- Summer peak is significant and continues to climb ("dual peaking")
- Hydro resources and imports are generally less available in summer

### The region faces both winter and summer load-resource balance deficits

\* NOTE: various definitions are used for the Northwest Region. The Northwest Power Pool ("Greater Northwest" region) exhibits a dual winter/summer peak, while the PNUCC region shown here has a stronger winter peak.

#### **PNUCC Summer vs. Winter Peak Demand**



#### **PNUCC Summer vs. Winter Need Forecast**



## **PacNW Near-Term Capacity Need** Winter vs. Summer Needs

 Reducing the winter peak in the NW is challenging due to its multi-day duration & daily dual-peak nature coupled with inconsistent wind and solar availability



#### Winter Peak Load



Summer Peak Load

#### **Renewables Summer Profile**



#### Renewables Winter Profile



PacNW Near to Mid-Term Capacity Need 2019 E3 Study Details



+ E3 2019 RA study considered Greater NW capacity needs under changing resource portfolios

 The study region consists of the U.S. portion of the Northwest Power Pool (excluding Nevada)

 Did NOT consider high electrification loads, which may further increase capacity needs



Energy+Environmental Economics Note: utilizes RECAP model but includes the latest properties of the latest properties of

('18-'30)

**Annual Additions** 

Note: utilizes RECAP modeling results from E3's 2019 study <u>Resource Adequacy in the Pacific Northwest</u>, but includes the latest proposed coal retirements schedules (as of Oct 2019).

~600 MW/yr

~1,300 MW/yr

n/a

need



#### + Planned capacity additions reach over 13,000 MW by 2030

- Most new additions are wind and solar
- Little new firm capacity online before 2025
- Over-reliance on "market purchases" may stress the region's available physical capacity



\* Estimate of effective capacity estimated using marginal ELCCs from E3's RECAP Study of 25% for solar, 40% for wind, 98% for storage Note: storage's ELCC quickly declines after the first tranche of additions



#### + Multiple utilities are planning large capacity additions to address their needs

- Utilities subject to strong clean energy policies may seek or require non-emitting new capacity
- PacifiCorp has the majority of the regional capacity need / planned additions, after their planned coal retirements
- + A PacNW regional RA program may further facilitate utility coordination needed for new large infrastructure investments in new resource adequacy capacity

|                                           | Planned Addition By Utility | y (Nameplate MW) |       |                                         |
|-------------------------------------------|-----------------------------|------------------|-------|-----------------------------------------|
|                                           | 2020                        | 2025             | 2030  |                                         |
| Portland General Electric                 | 0                           | 805              | 805   | <ul> <li>Significant need by</li> </ul> |
| Idaho                                     | 0                           | 276              | 967   | 2025 for utilities w/                   |
| Puget Sound Energy                        | 126                         | 430              | 1170  | mandatory or                            |
| Avista                                    | 15                          | 15               | 360   | voluntary clean                         |
| Pacificorp                                | 247                         | 6153             | 9198  | energy policies                         |
| NorthWestern Energy                       | 0                           | 735              | 798   | Market opportunity                      |
| Bonneville Power Administration           | 0                           | 0                | 0     | for non-emitting                        |
| Municipal Utilities                       | 0                           | 0                | 0     | capacity, though                        |
| Total Planned Additional Capacity<br>(MW) | 388                         | 8413             | 13298 | some gas may be                         |
|                                           | *Dooo not include [         |                  |       | reliability                             |

# PacNW Long-Term Capacity Need 2019 E3 Study: 2050 Portfolios

- + Firm dispatchable resources are built and maintained for reliability in low carbon scenarios
- + Relatively low storage demand (0-7 GW) in all scenarios (except zero-carbon)...driven by low ELCCs



Energy+Environmental Economics

<sup>1</sup>GHG-Free Generation % = renewable/hydro/nuclear generation, minus exports, divided by total wholesale load

Source: https://www.ethree.com/wp-content/uploads/2019/06/E3\_Long\_Run\_Resource\_Adequacy\_CA\_Deep-Decarbonization\_Final.pdf

## **PacNW Long-Term Capacity Need** 2019 E3 Study: The 2050 Reliability Planning Challenge

#### + 2050 reliability challenge is driven by high load and low renewable periods in low hydro years

- Multi-day, high magnitude loss-of-load events require firm dispatchable resources (high energy + capacity need)
- Even multiday storage limited by energy availability to address loss-of-load
- Seasonal storage may be able to address, but technology is not yet commercialized and likely to be costly





## Appendix



### PacNW Near-Term Capacity Need Details of Top-Down Regional Studies

| Characteristic                  | E3 Study                                                                                           | NWPCC                                               | BPA WB                                    | PNUCC                                                                            |
|---------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|
| Study Year                      | 2019                                                                                               | 2018                                                | 2018                                      | 2019                                                                             |
| Region                          | GNW (WA, OR, ID, UT,<br>MT, WY)                                                                    | PNW (ID, MT, OR, WA)                                | PNW (ID, MT, OR, WA)                      | OR, WA, ID; portions of MT (west), NV, UT, WY                                    |
| Resources Included              | Existing                                                                                           | Existing & Planned                                  | Existing & Planned                        | Existing & committed<br>excludes non-contracted<br>from load/resource<br>balance |
| Import / Exports                | Imports: 2.5 GW<br>Exports: 1.1 GW                                                                 | 1.5 – 3 GW                                          | 1.2 GW                                    | 2.5 GW                                                                           |
| Coal Retirements                | 3 GW in GNW<br>2019-2028                                                                           | 2.1 GW by 2022                                      | 2.1 GW by 2022<br>3 GW by 2026            | 3.6 GW                                                                           |
| Hydro ELCC                      | 53%                                                                                                | 80 years of water<br>availability                   | 120-hour sustained capacity (44%)         | 8th percentile of monthly average conditions (67%)                               |
| Peak Load                       | CP of all utilities in dataset                                                                     | Distribution of peak loads for 80 temperature years | BPA load forecasts                        | NCP of all participating<br>utilities                                            |
| Peak Load Growth<br>(2020-2028) | 0.70% CAGR                                                                                         | 0.32% CAGR                                          | 0.80% CAGR                                | 0.71% CAGR                                                                       |
| <b>ELCC</b> (2018)              | Endogenously calculated<br>in RECAP<br>- Thermal (outages)<br>- DR 50%<br>- Wind 7%<br>- Solar 12% | Endogenously calculated in GENESYS                  | Renewables do not count for firm capacity | Existing projects<br>- Wind 5%<br>- Solar 8%                                     |
| PRM                             | 12%                                                                                                | Annual LOLP of 5%                                   | ~12%                                      | 16%                                                                              |

## **Potential Peak Demand Impacts of Building Electrification in the PacNW**

- Long-term GHG reduction may drive electrification loads in the Northwest that will further increase peak loads
  - 2018 E3 PATHWAYS study considered impact on "Core NW" (WA, OR, parts of ID+MT)
- + Electric space heating drives significantly higher peak demand in cold climates
  - "Peak heat" drives very high 1 in 10 peak demand
    - Requires increased planning reserve margins
    - Core NW peak + PRM increases >50% compared to today with high heat pump loads

#### + Expanded transportation electrification loads may also increase capacity needs



Hourly loads, peak winter day and peak summer day in 2050, Cold-Climate Heat Pump Scenario

Source: E3 Pacific Northwest Pathways to 2050, assumes 96% fuel switching of space/water heating to electric

## **Key Terms & Abbreviations**

- BPA: Bonneville Power Administration
- CAGR: Compound Annual Growth Rate
- CP: Coincident Peak
- DSM: Demand Side Management
- EE: Energy Efficiency
- ELCC: Effective Load Carrying Capability
- GHG: Greenhouse Gas
- GW: Gigawatt
- LOLE: Loss of Load Expectation
- LOLP: Loss of Load Probability
- MW: Megawatt
- NCP: Non-Coincident Peak
- NWPCC: Northwest Power and Conservation Council
- PNUCC: Pacific Northwest Utilities Conference Committee
- PRM: Planning Reserve Margin
- RA: Resource Adequacy
- RECAP: E3's Renewable Energy Capacity Planning Tool: <u>www.ethree.com/recap</u>
- SCC: Social Cost of Carbon



## **Thank You**

Energy and Environmental Economics, Inc. (E3)

44 Montgomery St., Suite 1500

San Francisco, CA 94104

(415) 391-5100

ethree.com

Arne Olson, Sr. Partner (arne@ethree.com)

Kush Patel, Partner (kush@ethree.com)

Aaron Burdick, Sr. Consultant (aaron.burdick@ethree.com)