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ABSTRACT

Accurately forecasting wind and solar power output poses challenges for deeply decarbonized electricity systems. Grid operators must
commit resources to provide reserves to ensure reliable operations in the face of forecast errors, a process which can increase fuel
consumption and emissions. We apply neural network-based machine learning to expand the usefulness of median point forecast data by
creating probabilistic distributions of short-term uncertainty in demand, wind, and solar forecasts that adapt to prevailing grid conditions.
Machine learning derived estimates of forecast errors compare favorably to estimates based on incumbent methods. Reserves derived from
machine learning are usually smaller than values derived using incumbent methods, which enables fuel savings during most hours. Machine
learning reserves are generally larger than incumbent reserves during times of higher forecast error, potentially improving system reliability.
Performance is tested using multistage production simulation modeling of the California Independent System Operator system. Machine
learning reserves provide production cost and greenhouse gas (GHG) emission reductions of approximately 0.3% relative to historical 2019
requirements. Savings in the 2030 timeframe are highly dependent on battery storage capacity. At lower levels of battery capacity, savings of
0.4% from machine learning reserves are shown. Significant quantities of battery storage are expected to be added to meet California’s
resource adequacy needs and GHG reduction targets. The addition of these batteries saturates reserve needs and results in minimal within-
hour balancing costs in 2030.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087144

I. INTRODUCTION

Efforts to decarbonize energy systems will rely heavily on solar
and wind power to displace emissions from fossil fuel combustion.1,2

Power production from weather-driven resources such as solar and
wind poses challenges to electric system operators on many timescales.
It has been shown that forecasting solar and wind power output on a
short-term basis is difficult.3,4 More difficult still is to estimate the fore-
cast error of “net demand,” defined here as demand minus wind and
solar production potential, due to non-trivial weather-driven correla-
tions between solar and wind output and demand. In this paper, we
focus on the uncertainty of net demand within the operating hour.

Grid operators must be prepared to quickly rebalance power
supply in response to a range of possible forecast errors. Therefore,
grid operators hold operating reserves to ensure that system resour-
ces can balance fluctuations in net demand. Setting requirements for
operational flexibility involves a trade-off between economics and

reliability: excessively large requirements increase electricity produc-
tion costs and customer bills for little benefit, but the inability to
address a large forecast error can jeopardize reliable operations for
an entire interconnection.

In this paper, we develop an open-source machine learning
model, RESERVE, which is capable of characterizing the distribution
of net demand forecast errors under a wide variety of power system
conditions. Our goal in this work is not to improve the accuracy of
point forecasts for demand, wind, or solar, but to determine the poten-
tial size of demand, wind, and solar forecast error, while also capturing
covariance between these forecasts. We use machine learning to mine
the historical record to provide grid operators with the best estimate of
net demand uncertainty at different levels of likelihood of occurrence.
Grid operators could use these data to balance cost and reliability
by specifying the confidence intervals of forecast error to hold for
operating reserves.
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We use RESERVE to derive California Independent System
Operator (CAISO) 15-minute flexible ramping product (FRP) require-
ments. FRP is a type of operating reserve that allows CAISO’s
15-minute real time market to prepare for net load uncertainty in the
subsequent 5-minute real time market. To perform this function,
capacity held for 15-minute FRP is economically dispatched in the
5-minute energy market.

We then use a commercial production cost model, PLEXOS,5 to
simulate how the outputs from RESERVE impact the cost, greenhouse
gas (GHG) emissions, and reliability of the CAISO balancing area rela-
tive to incumbent CAISOmethods for deriving ramping requirements.
We test three systems: a base case in 2019 and a low and high battery
case representative of CAISO in 2030. Finally, we explain the mecha-
nisms by which energy storage affects the benefits of using RESERVE
to derive ramping requirements.

The rest of this article is arranged as follows: Sec. II provides a lit-
erature review, Sec. III outlines the methodology for creating the neu-
ral network-based machine learning model, Sec. IV provides results
from the machine learning model, Sec. V outlines the methodology for
creating the production simulation model, Sec. VI provides results
from the production simulation model, and Sec. VII draws conclu-
sions from this study. An Appendix provides technical details on
machine learning and production cost modeling.

II. LITERATURE REVIEW

To ensure real-time supply demand balance on electric grids, sys-
tem operators need to make informed judgments about how much
within-hour flexibility to hold such that they can manage forecast
error of net demand on the sub-hourly timescale. In practice, system
operators frequently set operating reserve requirements for future time
intervals based on forecast errors observed in the historical record.6–8

Looking backward to set future requirements does not allow operators
to dynamically increase or decrease requirements based on current
conditions. The distribution of forecast errors—both of net demand
forecasts and of other types of forecasts—is generally related to the
underlying physical phenomena such as temperature, wind speed, and
solar irradiance. Some methods, therefore, quantify uncertainty by
grouping historical forecast error observations from different periods
based on known predictive factors of uncertainty such as the level of
cloudiness or the wind speed.9 However, extreme forecast error events
in the historical record are sparse, which implies that grouping histori-
cal events to capture underlying correlations between errors and sys-
tem conditions increases the risk of having statistically insignificant
sample sizes.

Various researchers have sought to use probabilistic models to
quantify distributions of demand, wind, and solar forecast error. For
instance, previous work has used the method of moments to fit beta
and two-sided power distributions to solar irradiance data.10 However,
the choice of parametric distribution family for the conditional proba-
bility distribution functions (PDFs) can lead to overfitting of the train-
ing data and poor testing performance, whereas too narrow or specific
a choice of distribution family introduces bias into the model’s
predictions.

Quantile regression, by contrast, is a non-parametric probabilistic
forecasting approach that directly estimates quantiles of the condi-
tional forecast error distributions as a function of grid conditions.11,12

Non-parametric probabilistic forecasting methods have been used

within the electric power industry, with some notable examples being
lower–upper bound estimation (LUBE) and variants thereof,13,14

extreme learning machines (ELM),15 and ensemble-based approaches
such as quantile regression forests.16

Non-parametric quantile regression models may be constructed
by fitting a model to data using the pinball loss function as the cost
function. Example classes of models are polynomial functions of the
explanatory variables or highly nonlinear functions such as multi-layer
perceptrons (a type of artificial neural network). The pinball loss func-
tion described mathematically in Appendix A 1 is theoretically mini-
mized by the true conditional quantiles of the response variable
(conditional on the explanatory variables) and can be adjusted to esti-
mate any conditional quantile of the response variable.17 Multi-layer
perceptron-based quantile regression models can be trained via mini-
mization of the pinball loss function over historical data because of the
method’s simplicity and documented success in a variety of applica-
tions.11,18 Multi-layer perceptrons are a highly flexible class of model
that has been widely used in both regression and classification prob-
lems in machine learning. They are capable of modeling arbitrary
complex and nonlinear relationships between large numbers of
explanatory variables and response variables. Therefore, we adopt a
multi-layer perceptron machine learning formulation and use a pinball
loss function.

In the context of power systems, researchers have recently
improved upon the simpler methods employed by system operators
by using different methods to determine dynamic operating reserve
needs that adapt to real-time grid conditions. For example, researchers
have used machine learning models coupled to a mixed-integer opti-
mization simulation and reserve under- and over-procurement cost
penalties to determine optimal prediction intervals of day-ahead wind
forecast error.19 Other researchers have applied probabilistic methods
to co-optimize the provision of operating reserve and energy dis-
patch.20 De Vos et al. used information on day-ahead net demand
forecast error and forced outage rates to train a machine learning
model to predict hourly contingency reserve requirements for the
Belgian grid.21 Finally, the Electric Power Research Institute has devel-
oped a machine learning module in its DynADOR model that can be
used to calculate dynamic operating reserves.18

Optimization models, such as production simulation and capac-
ity expansion models, are an industry-standard method for assessing
the production cost, emissions, curtailment, and other qualities of
changing parameters in deeply renewable electricity grids.22,23 Prior
research has demonstrated the production cost benefits of reducing
overall operating reserve procurement needs.24 Additional work has
described and shown the benefit of procuring operating reserves from
flexible solar power plants.25–27

This study builds upon prior work in this field in several ways.
Similar to other researchers, we develop a machine learning model
that determines dynamic operating reserves for wind- and/or solar-
heavy grids. However, we specifically configured RESERVE so it could
be integrated into the existing sub-hourly operations of an ISO by
training our model with the data that would be available to system
operators in real-time operations and adhering to their conventions
for calculating net demand forecast error. We also evaluate the benefits
of the machine learning model using a multistage PLEXOS production
simulation model that was benchmarked to historical ISO operation
to ensure its reasonableness. This model’s multistage architecture
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captures unit commitment and market execution processes to quantify
production costs, emissions, and renewable curtailment savings from
applying the machine learning model. This investigation also examines
the benefits of the machine learning model in both the recent past
(2019) and the future (2030). This allows us to examine how and why
deriving dynamic operating reserves with machine learning provides
benefits, and how and why these benefits are affected by planned
short-duration battery energy storage additions. Finally, we document
and release our open-source machine learning model to the public via
a GitHub repository for further use by the modeling and system opera-
tor community.

III. MACHINE LEARNING METHODOLOGY

Our multi-layer perceptron neural network model, which we call
the RESERVE model, is trained to produce simultaneous quantile
forecasts of net demand, demand, solar production, and wind produc-
tion. The model employs a pinball loss function using an array of cal-
endar data, weather data, and lag terms containing information about
weather and forecast errors in the preceding forecast periods. In practi-
cal application, utilities would hold an amount of reserve that exactly
covers a prediction interval of the expected net demand forecast error,
which suggests an equivalence between forecast error and reserve
requirement. Details on the model structure can be found in
Appendix A1.

As outlined schematically in Fig. 1, the model is trained on fore-
casts from near-past and near-future 15-minute and 5-minute inter-
vals. The model predicts the forecast error between the 15-minute
forecast at T0 þ 15 and the three 5-minute forecasts that span the
same time window. When deployed, the trained model would ingest
near-past 5-minute forecasts as well as near-past and near-future
15-minute forecasts that would be available at the time at which the
prediction is executed (T0). The trained model uses 34 input data
points to produce each set of quantile forecasts.

We use a full year of historical 2019 demand, solar production,
and wind production forecast data from the CAISO OASIS database

as the basis of our forecast error predictions.28 Only binding interval
forecasts are used; advisory interval forecasts are not publicly available.
The data are cleaned in a manual process that fills in short intervals of
missing data via linear interpolation and corrects other data errors.

We are able to use the same year of data for both model training
and model validation because we split the data via a tenfold cross vali-
dation procedure. For each model configuration, we train ten separate
model instances on a unique subset of nine folds and test or “validate”
each model instance using the remaining, tenth data fold. In this way,
we measure variance in model performance due to the choice of train-
ing data set and robustly compare the performance of different model
configurations, while also ensuring that each individual model’s test
set data has not been used in the training process. Details on model
training can be found in Appendixes A2 and A4.

RESERVE is built using TensorFlow,29 which is an open-source
Python library. We have made RESERVE publicly available on
GitHub.30 RESERVE is structured as an artificial neural network with
two hidden layers and ten neurons per layer. Validation loss is calcu-
lated after each epoch of training. The Adam optimizer31 is used to
identify weights and biases in the model that minimize the pinball
loss.

We train models to simultaneously predict the conditional quan-
tiles of forecast error for four outputs: net demand, demand, solar pro-
duction, and wind production. These multi-objective models
minimize a weighted average of the pinball loss corresponding to these
four outputs, the weights being �3, 1, 1, and 1, respectively. A separate
model is trained for seven different target quantiles: P2.5, P5, P25, P50,
P75, P95, and P97.5. Furthermore, for each target quantile, a separate
model is trained for each of the ten training dataset folds, resulting in
70 model instances in total. To evaluate performance at a particular
target quantile (e.g., P97.5), we combine the validation set predictions
of the ten model instances corresponding to that quantile, and com-
pute performance metrics using the set of combined validation set pre-
dictions. In Sec. IV, Sec. V, and Appendix A, we refer to the collection
of predictions frommany model instances simply as “the model.”

FIG. 1. Schematic of machine learning model inputs.
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IV. MACHINE LEARNING RESULTS
A. Results compared to target metrics

As shown in Table I, the timeseries estimates of forecast error
closely replicate the target coverage over a wide range of possible levels
of forecast error. The model is, therefore, well suited to evaluate both
extreme under- and over-forecast events, as well as more moderate
levels of forecast error. Predictions with 50% coverage could help oper-
ators understand potential biases in their underlying point forecasts.

Figure 2(a) visualizes the results of machine learning predictions
for an example day in 2019, showing net demand forecast error pre-
dictions at different target quantiles, as well as the simultaneous pre-
dictions of the individual components of net demand forecasts:
demand, wind, and solar. We observe that the P25–P75 prediction
interval generally tracks the historical forecast error over the course of
the day, but as expected does not cover all of the observed forecast

TABLE I. Performance of neural network machine learning at achieving the
desired target (input) coverage of net demand forecast errors. Coverage is
defined as the percentage of forecast periods in which the realized forecast error
falls below the model prediction and is evaluated here for an entire year of obser-
vations from 2019.

Target coverage (%) Achieved coverage (%)

2.5 2.3
5 4.7
25 24.6
50 50.5
75 74.8
95 95.0
97.5 97.5

FIG. 2. (a) Forecast error quantile predictions for a sample day (7 July 2019) for net demand, demand, solar, and wind. (b) Forecast error quantile predictions for a sample
day (22 December 2019) for net demand, during which net demand forecast error exceeded the machine learning 97.5% forecast error quantile prediction. In both (a) and (b),
we observe sawtooth-shaped historical forecast error when the underlying forecast is changing rapidly; this is because we are comparing a 15-minute forecast to three
5-minute forecasts, which follows a convention adopted by the California Independent System Operator. The solar figure in (a) shows moderate levels of forecast error at night;
this could be reduced or eliminated via either further refinement of the machine learning model and/or a day/night filter imposed outside of the model.
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errors. As we move to prediction intervals that are expected to cover
larger fractions of the forecast errors (P5–P95, and then P2.5–P97.5),
we see more of the observed forecast errors being covered by the
machine learning prediction. The P2.5–P97.5 prediction interval cov-
ers almost all observed forecast errors. As can be seen in Fig. 2(a), the
forecast errors and prediction intervals of the individual demand,
wind, and solar components can help to explain the underlying drivers
of net demand forecast error. Including these individual components
can help grid operators to build intuition for and confidence in the net
demand forecast errors.

Figure 2(b) shows a day on which the machine learning model
did not fully cover the net demand forecast error during sunrise and
sunset. The model’s prediction of forecast error increases shortly after
the high net demand forecast error events, which suggests that the
model can respond to recently observed periods of high error by
increasing the predicted error going forward.

B. Machine learning model performance comparison
to incumbent CAISO method

As a point of reference for our neural network machine learning
model, we compare our results to the incumbent “histogram” method
used by CAISO to calculate ramping requirements in 2019. The
CAISO histogram method looks backward in time approximately one
month to observe extreme (P2.5 and P97.5) forecast error events. It
then uses these events, grouped by hour of the day and day type
(weekend or weekday), as the ramping requirement for the current
day. The CAISO histogram method determines ramping requirements
by comparing the 15-minute forecast to the maximum (or minimum)
5-minute forecast;6 our machine learning algorithm predicts the fore-
cast error between the 15-minute forecast and each 5-minute forecast.
To render the comparison between machine learning and histogram
methods easier, we take the maximum (or minimum depending on
error direction) of the P2.5 and P97.5 machine learning 5-minute

predictions.We further adjust the machine learning predictions by set-
ting the headroom or foot room ramping requirements to zero in any
interval that would have had a negative requirement.

We evaluate the performance of our machine learning model
using several performance metrics that are well suited to probabilistic
forecasting models. Many of these metrics have been used by CAISO
to quantify the performance of ramping requirement calculation
methodologies.32 Each of these performance metrics, shown in
Table II and described further in Appendix A3, quantifies an aspect of
desirable model performance but must be considered in the context of
the full suite of performance metrics to understand tradeoffs between
different aspects of model performance. For example, it is desirable for
a model to achieve a low average requirement in order to reduce the
total cost of ramping capacity procurement. However, the ramping
requirement should not be lowered at the expense of coverage, which
should remain close to the targeted conditional quantile level to ensure
that sufficient ramping capacity is held to maintain system reliability.
While the observed forecast error should occasionally exceed the pre-
dicted forecast error because the ramping requirement target is 97.5%
coverage (not 100% coverage), it is desirable to keep the average and
maximum values for any exceedance as low as possible; higher values
of exceedance represent larger reliability risks.

Machine learning methods can improve historical lookback
uncertainty calculations by adapting to near-real time conditions.
Comparing the Machine Learning and Histogram columns of Table II
shows that machine learning methods can lower both the average
requirement and the size of exceedance events. Exceedance events are
of particular concern for system operators, as these events can drive a
balancing area to be in violation of North American Electric Reliability
Corporation reliability standards33 and can cause the operators to lean
on neighboring balancing areas for flexibility. Machine learning shows
improvements in both the headroom and foot room directions, further
demonstrating that it can successfully represent both under- and over-
forecast events. The pinball losses of machine learning predictions are

TABLE II. Performance metrics for machine learning net demand forecast error prediction based on 2019 data. Headroom/upward ramping requirements ensure that enough
resources are available to provide extra power in periods with under-forecasted net demand; foot room/downward requirements prepare for over-forecasted net demand. The
coverage metrics for machine learning presented in this table differ slightly from those presented in Table I because the 5-minute machine learning predictions are transformed
into 15-minute requirements by taking the maximum or minimum error within each 15-minute interval. To ensure comparability between machine learning and histogram
columns, the histogram performance metrics were re-calculated from those depicted in CAISO’s documentation.

Performance metric Definition Units

Headroom
(upward ramping)

Foot room
(downward ramping)

Histogram
Machine
learning Histogram

Machine
learning

Coverage Percent of forecast errors covered by reserve
requirement (target is 97.5% coverage)

% 94.4 97.3 92.8 96.6

Average requirement Average of predicted forecast error at targeted
quantile

MW 776 614 786 726

Average exceeding The average size of excesses when observed forecast
error exceeds the model prediction

MW 234 152 220 175

Maximum exceeding Maximum size of excess when observed forecast
error exceeds the model prediction

MW 3,353 1,705 2,652 1,983

Pinball loss The expectation of the pinball loss function is mini-
mized by the true conditional quantiles

MW 29.6 16.6 31.5 19.9
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generally lower than those of the histogram method, indicating that
machine learning net demand uncertainty estimates more closely resem-
ble the “true” conditional quantiles for which the prediction is made.

The machine learning estimate of solar forecast error has the
most uncertainty in the middle of the solar generation output range,
which is frequently partially cloudy periods, as shown in the top left
panel of Fig. 3. The forecast error for demand, in contrast, is largest
when demand is high (top right panel). Both phenomena are reflected
in the net demand forecast, shown in the bottom panels, with the
highest net demand forecast errors occurring during medium solar
generation and high load hours. The histogram method, shown in the
solid red lines in the bottom panels, entirely misses these dynamics,
resulting in uncertainty requirements that are not strongly dependent
on either the solar forecast or the load forecast. This increases the risk
of over-procurement of ramping capacity during periods in which net
demand uncertainty is low and under-procurement during periods
when net demand uncertainty is high.

Extreme under-forecast events are of special concern for system
operators because their ability to start and ramp up generation can be
limited within the operating hour. Figure 4 examines the performance
of the machine learning and histogram methods during the 1% of
intervals with the highest net demand under-forecasts. Neither
method results in reserve requirements that cover all of the errors, but
the machine learning reserve requirements are 1,000–1,500MW

higher than the histogram method for every instance of forecast error
greater than 2,500MW. This indicates that a benefit of the machine
learning method is that it better prepares the system to cover extreme
forecast errors.

In Sec. V, we describe the formulation of our production cost
model, which we used to demonstrate cost savings related to the utili-
zation of machine learning requirements in the place of historical look-
back (histogram) requirements. The results from the production cost
modeling are desribed in Sec. VI. We note that CAISO is developing a
quantile regression methodology as the replacement for histogram-
based ramping requirements.34 While CAISO’s quantile regression
method does not rely on machine learning, it is similar to ramping
requirements developed in this paper because it calculates ramping
requirements based on real-time conditions. The quantile regression
method would, therefore, be expected to provide some of the benefits
relative to the histogram method that we show via PLEXOS modeling
of machine learning ramping requirements. formulating our

V. EXPERIMENTAL DESIGN FOR PRODUCTION COST
SIMULATIONS
A. Production cost model setup

CAISO, like other grid operators, runs multiple markets on dif-
ferent timeframes to help commit and dispatch resources under uncer-
tainty, including a day-ahead market for the CAISO footprint and

FIG. 3. Machine learning quantiles as a function of solar generation forecast and demand forecast. Histogram ramping requirements for net demand are shown for
comparison.
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real-time markets for the wider footprint of Western Energy
Imbalance Market (EIM). The CAISO market features co-optimized
procurement of energy as well as regulation, spinning, and non-
spinning reserves.35 The EIM includes 15-minute market (FMM)
and 5-minute real-time dispatch (RTD) timeframes and features
flexible ramping products for the FMM and RTD in the upward and
downward directions. Flexible ramping capacity ensures that unit
commitment and dispatch prepare for uncertainty in the net demand
forecast.

As shown in Fig. 5, we use a commercial production cost model,
PLEXOS,5 to simulate different timeframes to explore how different
flexible ramping requirements on the 15-minute timeframe impact the
cost, greenhouse gas emissions, and reliability of the CAISO system.
Each day is simulated three times with progressively lower levels of
forecast uncertainty and thermal generator commitment flexibility.

The first timeframe that we model in PLEXOS represents the
combined impact of CAISO day-ahead and hour-ahead scheduling
and is simulated with an hourly time step resolution. Unit commit-
ments from slower-moving steam units (both standalone and steam
units that are part of combined cycle units) are fixed after the first
stage and cannot be changed in subsequent stages. While the on/off
status for each of these units cannot be changed, subsequent stages can
re-dispatch the setpoint of each online unit within its operational
parameters. The second timeframe represents the FMM and is simu-
lated with a 15-minute time step resolution. For the FMM timeframe,
profiles for demand, wind, solar, and imports/exports are updated to
reflect new forecast information, and 15-minute flexible ramping

FIG. 4. Machine learning and histogram upward ramping reserve requirements for
periods of extreme (top 1%) net demand under-forecast events, plotted against the
magnitude of the historical net demand forecast error. Each data point represents
an individual observation from 2019.

FIG. 5. Multistage PLEXOS model setup and data flow between stages.
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requirements are enforced. All remaining thermal units are committed
in the second stage, but their dispatch setpoints can still be re-
dispatched in the next stage. The third timeframe represents the RTD
market and is simulated with a 5-minute time step resolution. Profiles
for demand, wind, solar, and imports/exports are updated again, as
well as profiles for flexible ramping requirements.

In all stages of modeling, regulation up, regulation down, and
spinning reserves are modeled as part of the unit commitment and
dispatch simulation. Reserve and flexible ramping requirements are
enforced at the CAISO-wide level. We model unit commitment and
dispatch on a unit-by-unit basis for the CAISO system itself and
include interactions with external entities via fixed import and export
schedules at fixed prices based on historical data. Energy dispatch is
performed at the zonal level with transmission constraints enforced
between zones that represent the three investor-owned utilities served
by CAISO: Pacific Gas and Electric, Southern California Edison, and
San Diego Gas & Electric.

We simulate multiple resource portfolios in PLEXOS, three of
which are presented in detail. The first is a near-past historical retro-
spective of 2019 in which the resource portfolio, demand, imports,
and exports are set at 2019 historical levels. The second, labeled “2030
High Battery,” reflects a 2030 resource portfolio that the California
Public Utilities Commission adopted for CAISO’s 2021–2022 trans-
mission planning cycle.36 As shown in Fig. 6(a), the largest differences
between 2019 and 2030 High Battery portfolios result from the growth
of solar and battery resources. Since the batteries are added largely to
meet California’s resource adequacy needs and GHG reduction targets
(rather than the operational needs that are the subject of this paper),
we are also interested in understanding how the model performs on a
future system with high penetration of renewable resources but lower
penetration of battery storage. Accordingly, we model a “2030 Low
Battery” resource portfolio, which removes 90% (12.5GW) of battery
capacity from the 2030 High Battery portfolio and replaces it with
12.5GW of combustion turbine capacity.

To explore the value of machine learning-derived ramping
requirements for net demand forecast uncertainty on the future
CAISO electricity system, we perform two separate simulations
for each of the 2030 Low and High Battery portfolios: one with

machine-learning derived ramping requirements, and one with his-
togram ramping requirements that are scaled up from 2019 values to
be consistent with the 2030 resource portfolio (see Appendix B for
more detail). Machine learning based 15-minute ramping require-
ments are calculated by taking the P2.5 and P97.5 values of forecast
error of net demand from the RESERVE model, which is produced at
a 5-minute time resolution, and taking the maximum (or minimum
depending on error direction) of the 5-minute values within each
15-minute (see Sec. IVB). Figure 6(b) compares 15-minute flexible
ramping requirements for 2019 and 2030.

VI. PRODUCTION COST SAVINGS RESULTS
A. Low battery capacity case results

One of our principal findings is that machine learning-derived
ramping requirements can provide a meaningful reduction in produc-
tion costs, GHG emissions, natural gas generation, and renewable cur-
tailment in systems with lower levels of battery capacity. As shown in
Table III, the 2019 and 2030 Low Battery portfolios show 0.3% and
0.5% production cost savings, respectively. Adding production cost
savings and savings from renewable energy certificate procurement
costs37 results in total savings of $18.5M/yr (2019) and $42.2M/yr
(2030 Low Battery) for the CAISO footprint. Machine learning ramp-
ing requirements reduce natural gas generation by replacing that gen-
eration with curtailed renewable generation, which decreases GHG
emissions.

Our results in Table III may overestimate the possible savings
from machine learning requirements in the actual CAISO system
because we simulate CAISO’s flexible ramping needs as a standalone
entity. The geographic diversity of solar, wind, and demand across the
entire EIM market footprint reduces CAISO’s actual flexible ramping
needs; if the diversity benefit of EIM-wide balancing were to be fac-
tored in, a reduction in the ramping requirement of �47% would be
expected in 2019.38 We also do not simulate procurement of ramping
capacity from non-CAISO resources to meet CAISO-area ramping
requirements, which would be expected to reduce savings from
machine learning requirements relative to what we have modeled. At
the same time, our PLEXOS production simulation model understates
the value of operational flexibility due to a lack of unplanned unit

FIG. 6. (a) CAISO resource portfolios simulated in PLEXOS for 2019 and 2030. (b) 15-minute flexible ramping requirements for 2019 and 2030, shown as the average require-
ment in each hour of the day based on a year of time series data.
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outages, perfect-foresight dispatch of energy storage within a single
simulation stage, zonal (as opposed to nodal) modeling of transmis-
sion constraints, and a variety of other factors. These real-world con-
siderations would tend to increase the observed savings and reliability
benefits from machine learning reserves.

Because we cannot observe reliability events or near-events
directly in PLEXOS, we instead observe if machine learning reserves
affect the frequency of high energy price events. We have already seen
that machine learning flexible ramping requirements are significantly
higher during extreme net load under-forecast events relative to the
histogram method, likely decreasing the frequency of high energy pri-
ces that are driven by under-forecasts. However, the lower average
machine learning requirements have the potential to increase the fre-
quency of high price events because fewer MW of flexibility is required
on average. To explore the net impact of these two factors, we calculate
the difference in frequency of 5-minute intervals in the RTD model
stage that have an energy price above $150/MWh between machine
learning and histogram PLEXOS simulations. $150/MWh is chosen as
the threshold for a “high” price because it is roughly five times greater
than the average price. We observe that the histogram and machine
learning PLEXOS results have minimal differences in the frequency of
high energy prices. Thus, we infer that the machine learning require-
ments adjust to the underlying uncertainty in the net demand forecast
in a way that saves cost by reducing the ramping requirement in times
where there is less forecast uncertainty but does not significantly
increase the frequency of challenging balancing intervals.

B. High battery capacity case results

Comparing the 2030 Low Battery and 2030 High Battery col-
umns of Table III, we see that increasing the capacity of batteries on
the 2030 CAISO system results in a steep decrease in the benefits of
machine learning ramping requirements relative to histogram require-
ments. With higher battery capacity, the cost to provide ramping
requirements is frequently near zero, which reduces the potential

benefits of improvements to the ramping requirement itself. This
dynamic is explained in depth below.

Figure 7 demonstrates that on a system with abundant solar gen-
eration but little supporting battery capacity (2030 Low Battery), it
could be challenging and costly to meet ramping requirements. Higher
levels of solar generation relative to 2019 increase the net demand
ramping requirements because the magnitude of solar generation
uncertainty grows with solar capacity. Meeting the ramping require-
ments is challenging largely due to the relationship between reserve
provision and curtailment. The 2030 Low Battery panel of Fig. 8 shows
that renewable curtailment can persist during daylight hours; increas-
ing thermal generation commitment to provide ramping flexibility
during these hours would increase curtailment and fuel consumption
because many thermal generators must be online and generating to
provide operational flexibility. The relatively small battery capacity in
the 2030 Low Battery portfolio forces the batteries to choose whether
to provide reserves and ramping or to charge and discharge to perform
energy arbitrage; this choice creates an opportunity cost for batteries
to provide flexible ramping. On the example day in Fig. 8, the charging
and discharging schedules in the 2030 Low Battery column show that
batteries do not fully cycle their state of charge despite persistent
renewable curtailment, thereby largely forgoing energy arbitrage
opportunities. Instead, the batteries use most of their capacity to pro-
vide both upward and downward reserves. Because of high opportu-
nity costs from thermal resources and batteries, we see positive flexible
ramping prices; downward flexible ramping is especially challenging
to provide on this day, with high positive prices throughout daylight
hours.

Comparing the 2030 High Battery and 2030 Low Battery lines in
Fig. 7 demonstrates that adding batteries drastically reduces the cost of
providing 15-minute ramping flexibility. We calculate the market size
for flexible ramping (in both the upward and downward directions) as
the product of 15-minute FRP price and 15-minute FRP quantity over
the course of the year. The market size for 15-minute FRP for the 2030
Low Battery portfolio is $20M/yr but drops to only $4M/yr for the

TABLE III. Savings from machine learning 15-minute flexible ramping requirements relative to histogram requirements. Savings from PLEXOS runs are calculated as the
change in the 5-minute RTD stage that results from a change in the flexible ramping requirement in the upstream FMM stage.

Metric Units

Difference: Histogram minus machine learning

2019 2030 low battery 2030 high battery

Production cost savings % of annual production cost 0.3% 0.4% 0.0%
$M/yr 14.5 12.9 0.1

Total cost savings (renewable curtailment
reduction valued at $18/MWh)

$M/yr 18.5 42.2 0.2

GHG savings % of annual emissions 0.2% 0.6% 0.0%
MMTCO2/yr 0.1 0.3 0.0

Natural gas generation reduction % of annual natural gas generation 0.4% 1.6% 0.2%
GWh/yr 225 832 81

Curtailment reduction % of wind and solar generation potential 0.6% 0.9% 0.0%
GWh/yr 224 813 7

Decrease in frequency of RT5 energy
prices above $150/MWh (negative
indicates increase)

% of 5-minute intervals 0.0% 0.0% �0.2%
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FIG. 7. 2030 prices for 15-minute flexible ramping requirements as a function of battery capacity (with low and high battery cases as bookends), presented as an hourly average
over the year. Intermediate battery capacity portfolios (2.8, 4.2, and 7.0 GW) depict the pace at which additional battery capacity reduces flexible ramping prices. These portfolios,
like the 2030 Low Battery portfolio, remove a portion of the battery capacity from the 2030 High Battery portfolio and replace it with equivalent combustion turbine capacity.

FIG. 8. Example dispatch day from June 2030. Simulations with machine learning ramping requirements are shown. In the Battery Operations panels, percentages can go
above 100% because batteries provide energy and reserves with the full operational range from charging to discharging.
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2030 High Battery portfolio largely because the extra battery capacity
in the 2030 High Battery portfolio reduces the marginal cost to provide
within-hour ramping capacity to near zero in most hours.

On the example day in Fig. 8, the impact of higher battery capac-
ity on both reserve and energy prices is shown. After sunset in the
2030 Low Battery column, the price of upward flexible ramping tracks
the shape of the energy price, showing that the opportunity cost to
provide ramping flexibility can be tied to the cost to provide energy on
this day. In contrast, the price of upward flexible ramping in the 2030
High Battery column is near zero in most hours and the energy price
after sunset is flat.

Batteries are expected to flatten energy prices by discharging dur-
ing the highest price intervals first, followed by the next highest price
intervals, and so on. Comparing the energy prices in Fig. 8, we see that
the addition of battery capacity between the 2030 Low Battery and
2030 High Battery portfolios has resulted in prices from sunset to mid-
night converging on a single, flat price. Higher priced combustion tur-
bine generation shown in the 2030 Low Battery column is replaced
with battery dispatch and lower priced combined cycle gas generation
in the 2030 High Battery column. The occurrence of many consecutive
hours of similar prices enables batteries to provide reserve and ramp-
ing flexibility at low or zero cost because a battery is indifferent to
exactly when it produces energy at night, as long as it discharges before
low or zero price solar production hours occur.

Four-hour duration batteries, including those modeled in
PLEXOS here, can be particularly effective at providing ramping
capacity in a system with abundant solar energy because the duration
of high- and low-price hours is largely set by the diurnal schedule of

solar generation. Solar resources generate for roughly half the day, cre-
ating low-priced periods longer than four hours in duration, followed
by nighttime periods of higher prices that are also longer than four
hours. Due to their limited energy capacity, the batteries cannot charge
at their full power rating in all of the low-price hours, nor can they dis-
charge at their full power rating in all of the high price hours. This can
be seen in the charging and discharging schedules of batteries in Fig. 9,
where on average each four-hour battery is not being scheduled at
100% charge/discharge in the 2030 High Battery portfolio. Because the
batteries can generally be scheduled such that they have spare capacity
available to provide grid flexibility within the operating hour, they can
provide reserve and ramping capacity at a low or near-zero marginal
cost. We expect, but do not demonstrate, that similar results would be
observed with different storage durations, as long as the average dura-
tion of the storage resources is shorter than the duration of high- and
low-price periods.

In the capacity expansion modeling that designed the 2030 High
Battery portfolio, resource adequacy and greenhouse reduction con-
straints frequently drive portfolio selection.39 Four-hour batteries
installed primarily to provide resource adequacy are available to pro-
vide arbitrage and ramping in off-peak hours. Similarly, batteries
installed primarily to drive GHG reductions by moving solar energy to
the nighttime can also provide ramping and resource adequacy. Thus,
on average batteries are not utilized at 100% capacity in each hour
(Fig. 9), but they are utilized heavily during peak periods and hours of
curtailment. Because batteries have slack capacity available to provide
ramping and reserve capacity in most hours, the marginal cost of pro-
viding these products decreases as more batteries are added to the

FIG. 9. Battery utilization for the 2030 Low Battery and 2030 High Battery portfolios is presented as an hourly average over the year. Both cases use machine learning flexible
ramping requirements.
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system (Fig. 7). A recent report, which also simulates a California
power system corroborates our finding that batteries can have a large
impact on operating reserve prices, and in the extreme, can minimize
the cost to provide operating reserves.27

While the results of our 2030 High Battery scenario suggest that
operating flexibility may be a less important constraint on systems
with high battery penetration, this portfolio mix may be somewhat
unique to the southwestern portion of the United States, which has a
practically unlimited supply of high-quality solar resources, somewhat
limited availability of portfolio-diversifying wind resources, and a
summer-peaking load pattern for which battery storage paired with
solar has a high resource adequacy value. On these systems, solar-
driven price swings allow short-duration batteries to maintain the state
of charge windows necessary to provide within-hour balancing services
at low cost as a by-product of charging and discharging to perform diur-
nal energy arbitrage. Northern systems with high wintertime loads and
a higher reliance on wind power, which does not have such a predictable
diurnal output pattern, are likely to see less development of battery stor-
age in the next decade. These systems would continue to benefit from
machine-learning-derived reserve requirements, as would systems in the
southern United States that have not yet achieved battery saturation.
Moreover, while we have not explored this concept in this paper, we
believe that the machine-learning techniques that we describe here
could help system operators and battery storage project owners main-
tain a state of charge and maximize the value of batteries to the system.

Finally, the value of machine learning in reserve calculations is
not limited to production cost savings. As shown above in Fig. 4,
machine learning-derived reserves are much better at identifying
potentially large under-forecast errors. Even on systems with high bat-
tery storage penetration, early and accurate identification of these
potential events could help the system operator to ensure that the sys-
tem’s batteries are charged and ready to help ensure system reliability.

VII. CONCLUSIONS

Our results suggest that in systems with relatively constrained
sub-hourly flexibility, both machine learning-derived ramping require-
ments and/or provision of ramping capacity from variable renewables
(see Appendix C) can provide value to the system in the form of
reduced fuel combustion during most hours and better reliability dur-
ing periods of high forecast error. As renewable penetration increases,
the potential value of the machine learning model grows as well.

Our study focuses narrowly on one flexible product of the
CAISO system: the 15-minute flexible ramping product. However,
other balancing products such as regulation up and down could also
benefit from machine learning techniques to finely tune procurement
requirements. Regulation is currently a much larger cost driver for the
current CAISO system than FRP; hence, significant additional savings
may be available to the CAISO and other system operators from the
machine learning model. Future studies should evaluate the benefits of
applying machine learning techniques for these products.

We also observe that the presence of large quantities of battery
storage can reduce the importance of reserving within-hour flexibility
in grid operations ahead of real-time operations. However, until such
time as these resources are present everywhere—likely years or decades
in the future—operators can derive value from revising ramping
requirements and expanding the number of resources that can con-
tribute to ramping needs. Even in electricity systems with much higher

levels of storage, high-quality information on net demand uncertainty
can be valuable to ensure that storage resources maintain a state of
charge that enables them to perform during critical periods, particu-
larly periods of high net demand forecast error. Future studies should
evaluate the benefits of the machine learning model for other systems,
particularly northern systems with higher reliance on wind rather than
solar and fewer batteries.
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and Western Electricity Coordinating Council (WECC) dataset in this
study as a base from which to build our system. This base PLEXOS
model and dataset are not publicly available but can be licensed from
Energy Exemplar (https://www.energyexemplar.com/plexos). The data
that support the findings of this study are openly available in CAISO
OASIS at http://www.caiso.com/TodaysOutlook/Pages/default.aspx, and
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overview/US48/US48). PLEXOS Model Benchmarking was per-
formed using the EPA’s CEMS database (https://www.epa.gov/emc/
emc-continuous-emission-monitoring-systems). The public data that
support the findings of this study are available from the correspond-
ing author upon reasonable request.

APPENDIX A: SUPPLEMENTAL RESERVE MODELING
DETAILS

1. RESERVE model structure

The RESERVE model is a multi-layer perceptron neural net-
work with two layers and ten neurons per layer. We experimented
with the number of hidden layers and neurons. This did not result
in major changes to model performance. Figure 10 presents an illus-
trative diagram of the RESERVE neural network structure.

The RESERVE model presented in this manuscript utilizes 34
inputs:

• 15-minute market forecasts for demand, solar, and wind at T0 � 30,
T0 � 15, T0, and T0þ 15 (3� 4¼ 12 inputs);

• 5-minute market forecasts for demand, solar, and wind at T0 � 30,
T0 � 25, T0 � 20, T0 � 15, T0 � 10, and T0 � 5 (3 � 6¼ 18
inputs); and

• Calendar-based inputs: solar hour angle, solar day angle, days
since start of training period, and an index for each 5-minute
interval within the 15-minute interval at T0 þ 15 (four inputs).

The 5-minute index is necessary because RESERVE predicts fore-
cast error for each of the three 5-minute intervals within each
15-minute interval. All inputs other than the 5-minute interval index
remain static as we progress through the three 5-minute intervals
within each 15-minute interval.

The inputs described above are fed into the input layer, which
is then subjected to operations that transform them into the values
of each neuron, and ultimately the desired outputs. The input
streams are first normalized with the built-in normalization layer
function in TensorFlow. This first subtracts the mean of each fea-
ture from the time-varying feature values. Then, this difference is
divided by its standard deviation. The mean and standard deviation
is calculated from all training-validation data and remains constant
for each cross-validation fold and the testing process. Each layer of
operation is a linear recombination of the previous layer with an
activation layered on top, in the following mathematical form:

Hkþ1; i ¼ ReLU
X
j

Hk;jwk;i;j þ bk;i;j
� �

; (A1)

in which Hk;j denotes the value of neuron j in layer k. wk;i;j is
referred to as the weight that connects the neuron i in layer k to
neuron j in layer kþ 1, while bk;i;j is the bias term that connects the
two same neurons.

On top of the linear combination operation defined by the
weights and biases, an activation function applies non-linearity to
the system. REctified Linear Unit40 (ReLU) is chosen as the activa-
tion function, which takes the following form:

ReLU xð Þ ¼
0; x < 0;

x; x � 0;

(
(A2)

in which x is the value passed from previous layer or input. ReLU has
become an industry standard with its demonstrated performance in
multiple disciplines and resistance against gradient explosion.

Taking the values of the output neurons, the loss function
forms the minimization target. In RESERVE’s case, the Pinball loss
function of each output neuron can be written as

PinballLoss y; sð Þ ¼ wo
s y0 � y
� �

; y < y0;

1� sð Þ y � y0
� �

; y � y0;

(
(A3)

in which s is an input parameter representing the quantile for
which we would like the model to generate a prediction. y and y0

are the predicted and actual values of this output, respectively. wo is
the weight for this output in the total objective calculation. Note
that when s ¼ 0:5, the pinball loss becomes the mean absolute
error. RESERVE minimizes the weighted-average pinball loss asso-
ciated with net demand, demand, solar, and wind forecast errors;
the weighting factors that we use are

ffiffiffi
3
p

, 1, 1, and 1, respectively.
We use

ffiffiffi
3
p

(equal to about 1.73) for net demand to prioritize this
output over the others because net demand forecast error will ulti-
mately be used to set reserve levels. Individual demand, solar, and
wind forecast error estimates can be used to understand drivers of
net demand forecast error but are not directly used in our study.

As discussed in Sec. IV B, we perform two transformations
on RESERVE’s predicted forecast error values to create reserve
requirements that are used in production simulation. The firstFIG. 10. Illustrative diagram of the RESERVE neural network.
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transformation identifies the maximum (or minimum depending
on forecast error quantile) of the three 5-minute forecast error
values in each 15-minute interval to produce 15-minute ramping
requirement values. This was done at the CAISO’s request to match
the calculation process used by CAISO’s histogram method. The
second transformation adjusts the machine learning predictions by
setting the headroom or foot room ramping requirements to zero in
any interval that would have had a negative requirement—an infre-
quent occurrence that implies a persistent bias toward either under-
or over-forecasting in the underlying demand, wind, or solar
forecasts. Note that the performance metrics that we present in
Appendix A 4 have not had these two transformations applied
because in that section, we quantify the ability of the RESERVE
model to achieve the desired forecast error prediction targets.

2. Training procedure

RESERVE uses a tenfold cross validation procedure with the
ADAM optimizer.

During training, a full year of data from 2019 is used, which theo-
retically should yield 1 year � 365days/year � 24h/day � 12 5-minute
intervals/hour¼ 105,120 training samples. After removing a small
number of samples with incomplete data, this translates to roughly
90,000 training samples and 10,000 validation samples in each of the
training and validation iterations. On the computer we employed when
training RESERVE, which includes an Intel Core i7-8665U processor
and 16 GB of RAM, it takes 10–15 epochs or 2 to 5 minutes to train
one model for one quantile. With ten cross validation iterations and
seven quantiles, it takes 3 to 4hours to finish training.

To train each of the ten models for a given input quantile, the
model is fed batches of data to calculate gradients and make updates
to weights and biases. In our application, each batch consists of 64
data samples. In practice, the size of the batch is chosen such that it
is small enough to not throttle the data transfer between RAM and
the processing unit. In practice, 64 and multiples of it are often cho-
sen as a convenient default.41

For each cross-validation fold, RESERVE trains until no signif-
icant improvement are observed in three epochs (TensorFlow

parameter: patience¼ 3). Here, we use epoch to describe when
enough batches of data have passed through the model that the
model has seen all training data exactly once. Significant improve-
ment is defined as an improvement at least 0.5MW in pinball loss
(TensorFlow parameter: min_delta¼ 0.5).

A summary of our training, evaluation, and deployment pro-
cess can be found in Fig. 11.

3. Evaluation metrics

As described in Table II, we use coverage, average requirement,
average exceeding, maximum exceeding, and pinball loss to evaluate
our model’s performance. While the main text is focused qualitative
description, here we give mathematical definitions for completeness.

For coverage,

C y; y0
� �

¼
1; y < y0;

0; y � y0;
coverage ¼ 1

N

X
i

C yi; y
0
i

� �
;

(
(A4)

in which C yi; y0i
� �

is a function that keeps a tally of each instance
where forecasted quantile value is smaller than the real value. N is
the total number of samples. For a perfect model, coverage would
be exactly the target quantile.

For average requirement,

Requirement ¼ 1
N

X
i

yij j: (A5)

It is a simple average of the absolute value of the predicted forecast
error for the input quantile. We use the term “requirement” here
because in our PLEXOS study, we use forecast error quantile data
for flexible ramping requirements.

For average exceedance,

Eavg ¼ 1
M

X
i

yi � y0i
� �

8yi > y; (A6)

in which M is the total number of instances where predicted quan-
tile y0 is smaller than the true value y.

FIG. 11. Flow chart describing the procedure of training, evaluation, and deployment.
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For maximum exceedance,

Emax ¼ max yi � y0i
� �

8yi > y: (A7)

Maximum exceedance is the largest of all exceedance instances.
For the mathematical definition of the pinball loss, readers are

referred to Appendix A 2.
To provide a broader range of metrics, we also calculate and

present below two additional metrics using 2019 data: reliability
and sharpness. Reliability and sharpness are similar metrics to the
coverage and requirement metrics (respectively) presented in the
main text of the manuscript, except that coverage and requirement
focus on one side of a quantile, while reliability and sharpness focus
on an opposing quantile pair.

Reliability, sometimes also called validity or calibration, is
defined as

C y; y1; y2ð Þ ¼
1; y1 < y < y2;

0; y � y2 or y < y1;

(

Reliability ¼ 1
N

X
i

C yi; yi;s; yi;1�sð Þ;
(A8)

in which yi;s; yi;1�s are predictions from opposing quantiles s and
1� s on the same sample. The term “reliability” here should be inter-
preted as the statistical metric, not the power systems concept of reli-
able system operations. Reliability indicates how frequently the
observed forecast errors fall within the range between two quantiles.
Here, we calculate the reliability of RESERVE’s predictions between
the quantile pair 2.5% and 97.5%. A perfect reliability result here
would be 95%, and the probability that forecast errors fall between
2.5% and 97.5%. The reliability of RESERVE’s predictions for 2019
data is found to be 93.9%, improving on the CAISO histogram method
for the same quantiles, which has a reliability of 87.2%.

Sharpness, sometimes also called efficiency or width, is defined
as

Sharpness ¼ 1
N

X
i

ys � y1�sj j: (A9)

Sharpness measures the average distance between a pair of quantile
predictions. All else equal, a smaller sharpness value is desired
because higher reserve requirements increase power system

dispatch costs. Here, we measure sharpness in units of MW
between the 2.5% and 97.5% quantiles. We find that RESERVE’s
sharpness for 2019 data is 1,340MW, improving on the calculated
CAISO histogram method value of 1,562MW.

4. Supplemental RESERVE results

In this section, we provide coverage and pinball loss results for
each prediction target and target quantile for 2019 data, coverage
and pinball loss results for each of the 10 folds for the net demand
prediction target for 2019 data, and quantile crossing frequency and
magnitude for the net demand prediction target for 2019 data.

APPENDIX B: SUPPLEMENTAL PLEXOS MODELING
DETAILS AND RESULTS

In this section, we provide additional detail on aspects of
PLEXOS production simulation modeling.

1. 2019 Benchmarking

To ensure that our simulations of the 2019 CAISO system ade-
quately reflect conditions experienced in 2019, we benchmark
results of the 2019 histogram ramping requirement PLEXOS simu-
lation to historical CAISO data. It is our goal to model a realistic set
of historical conditions, but some deviations are expected between a
production cost simulation and actual CAISO operations.

In Fig. 12, we observe good agreement between the 2019
CAISO historical and the PLEXOS simulation in terms of annual
average energy production, broken out by energy source. In Fig. 13,
we show that PLEXOS largely reproduces historical trends on a
month-hour average basis for 5-minute energy prices, thermal gen-
eration, and renewable curtailment. Of note, energy price differ-
ences in February are higher in 2019 CAISO historical data due to a
gas pipeline outage that caused higher than usual natural gas prices.
We do not recreate this outage in PLEXOS because we do not want
our analysis to reflect anomalous gas grid conditions, and therefore,
we see lower energy prices in February.

2. Battery state of charge constraints

In our PLEXOS modeling, batteries can provide flexible ramp-
ing capacity, regulation reserves, and spinning reserves in addition

TABLE IV. Coverage and pinball loss results for each prediction target and target quantile for 2019 data.

Metric Prediction target

Target coverage (%)

2.5% 5% 25% 50% 75% 95% 97.5%

Achieved coverage (%) Net demand 2.5% 4.8% 24.4% 49.9% 75.3% 95.0% 97.5%
Demand 2.4% 4.8% 24.8% 50.8% 74.9% 94.9% 97.5%
Solar 3.1% 5.1% 23.0% 51.2% 73.9% 94.9% 97.3%
Wind 2.6% 4.9% 25.7% 48.6% 75.2% 95.3% 97.3%

Pinball loss (MW) Net demand 12.7 19.5 46.5 56.3 44.8 18.6 13.2
Demand 17.6 25.8 67.1 81.1 66.0 26.2 20.4
Solar 10.9 15.0 36.7 43.8 36.1 17.2 13.7
Wind 9.7 12.4 28.0 33.0 26.5 10.2 8.1
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to charging and discharging. We impose a state of charge constraint
on battery reserve and ramping capacity provision that ensures that
the capacity could be called upon continuously for one hour at the
reserved capacity. This assumption ensures that batteries are pre-
pared for forecast errors or contingency events that span many con-
secutive 15- or 5-minute intervals but is not so restrictive as to
exclude batteries from providing reserve and ramping capacity. For
upward products (upward flexible ramping, spinning reserve, and
regulation up), a state of charge constraint ensures that the storage
resource has at least 1MWh of energy that could be discharged for
every MW of capacity committed. For downward products (down-
ward flexible ramping and regulation down), a state of charge con-
straint ensures that the storage resource could accept least 1MWh
of charge for every MW of capacity committed. The impact of the
battery state of charge constraint can be seen in the flexible ramping
price charts in Fig. 7. In the 2030 High Battery Case, we observe
flexible ramping prices that are materially above zero only during
sunrise and sunset hours. We believe that these prices result from
the economic incentive to fully discharge and charge batteries
before sunrise and sunset, respectively. The battery state of charge
requirements creates an opportunity cost for the battery to provide
ramping and reserve flexibility because the battery must choose
between charging/discharging and holding capacity for sub-hourly
ramping/reserve needs. The flexible ramping price increases at sun-
rise and sunset in the upward and downward direction, respectively,
are consistent with batteries trading off between energy and reserve
scheduling.

3. Implementation of flexible ramping requirements

We implement CAISO flexible ramping requirements as two
reserve products in PLEXOS: upward flexible ramping and down-
ward flexible ramping. The upward and downward requirements
represent the uncertainty of the net demand forecast, as derived
using either histogram or machine learning methods. Flexible
ramping requirements are modeled for both the 15-minute and
5-minute dispatch stages; the flexible ramping requirement time
series data are updated between the 15-minute and 5-minute stage.
Because net demand uncertainty is typically smaller on the
5-minute timeframe, the 15-minute requirements are generally
much larger than the 5-minute requirements. We focus on
15-minute flexible ramping requirements in this study and, there-
fore, use 2019 5-minute histogram requirements from CAISO
OASIS for all 5-minute model runs.

Hydroelectric (including pumped storage), battery, and com-
bined cycle gas turbines (CCGTs) can provide flexible ramping
capacity in our PLEXOS model. CCGT and hydroelectric resources
are limited in the amount of flexible ramping capacity that they can
provide by generator ramp rate limits and the timeframe of the flex-
ible ramping product (either 15- or 5-minute). Flexible ramping
capacity reserved on each resource is separate and mutually exclu-
sive from the three other reserve products modeled in PLEXOS:
regulation up, regulation down, and spinning reserve.

Similar to CAISO’s implementation of FRP constraints in their
market optimization software, we include a price cap on the provi-
sion of FRP capacity. This cap ensures that energy dispatch is

TABLE V. Coverage and pinball loss results for each of the 10 folds for the net demand prediction target for 2019 data.

Metric Fold #

Target coverage of net demand (%)

2.5% 5% 25% 50% 75% 95% 97.5%

Achieved coverage (%) 1 2.2% 3.7% 23.4% 53.7% 75.4% 95.7% 97.8%
2 1.5% 4.5% 24.7% 49.6% 78.0% 95.3% 97.8%
3 2.0% 5.7% 22.6% 47.0% 73.0% 94.8% 98.1%
4 3.3% 6.3% 26.9% 52.5% 74.0% 94.7% 97.2%
5 2.7% 4.3% 24.5% 49.2% 73.6% 94.0% 96.9%
6 2.0% 4.5% 23.6% 50.9% 74.4% 94.3% 97.0%
7 1.7% 3.8% 22.6% 47.6% 75.6% 94.5% 96.9%
8 3.3% 4.6% 26.9% 54.6% 73.4% 95.3% 97.8%
9 2.4% 5.2% 26.9% 52.2% 77.6% 95.5% 98.0%
10 2.6% 5.2% 25.5% 50.7% 74.1% 94.6% 97.6%

Pinball loss (MW) 1 13.9 23.2 61.1 75.3 59.9 22.2 17.1
2 18.5 24.5 63.3 76.0 63.0 25.3 18.4
3 15.3 24.3 67.9 83.2 67.5 27.5 20.0
4 23.9 30.8 69.9 84.4 69.1 25.7 19.8
5 16.8 28.4 68.8 83.2 66.6 28.6 29.6
6 18.0 24.2 68.3 81.4 66.7 28.4 20.8
7 15.8 25.1 67.5 80.8 67.0 25.6 19.3
8 18.4 26.5 67.0 80.7 66.5 26.5 19.6
9 18.4 25.0 67.1 81.2 65.4 25.9 19.2
10 16.6 25.8 69.7 84.7 68.1 26.2 19.9
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prioritized over ramping capacity. We model a FRP price cap of
$1,000/MWh in the upward direction and $155/MWh in the down-
ward direction in the 15-minute stage and 5-minute stage.

4. 2030 histogram 15-minute ramping requirement
approximation

We create a time series of 15-minute flexible ramping require-
ments that approximate what CAISO histogram flexible ramping
requirements would be with a 2030 resource portfolio and demand
forecast. As described below, 2030 histogram reserves are derived by
scaling up the 2019 histogram reserves using the expected growth in
net load forecast error. This growth in the forecast error is driven by
the expected growth in load, wind and solar from 2019 to 2030. This
growth in solar and wind capacity is shown in Fig. 6(a).

CAISO currently uses the difference between 15- and
5-minute market net load forecasts to derive histogram reserves.
We used CAISO’s OASIS portal to download binding interval 2019
15- and 5-minute flexible ramping product requirements, as well as
load, wind, and solar profiles for the 15- and 5-minute markets.
The wind and solar time series data from 2019 are, respectively,
adjusted to 2030 levels by linearly scaling up 2019 output profiles in
all intervals using the ratio of 2030 wind and solar capacities to the

TABLE VI. Quantile crossing frequency and magnitude for the net demand prediction target for 2019 data. Blank cells indicate that no quantile crossings were observed.
Quantile crossing is a comparison between two different prediction targets; diagonal terms are shaded to indicate that a comparison of a quantile to itself is not meaningful.
While we observe some quantile crossing events between nearby quantiles, the frequency of these events decreases quickly as the distance between target quantiles increases.
Our production cost study utilizes only a single extreme quantile in each direction (P2.5 and P97.5); quantile crossing is not observed between these quantiles.

Target coverage of net demand (%)

Metric
Target coverage of
net demand (%) 2.5% 5% 25% 50% 75% 95% 97.5%

Frequency of quantile
crossing (% of
15-minute intervals)

2.5% 20.8% 0.2%
5% 20.8% 1.0%
25% 0.2% 1.0% 2.1% 0.1%
50% 2.1% 3.1% 0.1% 0.6%
75% 0.1% 3.1% 0.6% 1.5%
95% 0.1% 0.6% 11.2%
97.5% 0.6% 1.5% 11.2%

Average size of
quantile crossing
(MW)

2.5% 58 27
5% 58 34
25% 27 34 31 22
50% 31 25 41 109
75% 22 25 56 121
95% 41 56 78
97.5% 109 121 78

Maximum size of
quantile crossing
(MW)

2.5% 491 217
5% 491 467
25% 217 467 239 89
50% 239 263 149 638
75% 89 263 322 985
95% 149 322 923
97.5% 638 985 923

FIG. 12. Annual generation comparison between historical 2019 CAISO operations
and PLEXOS benchmark simulation of 2019. PLEXOS data originates from the
5-minute dispatch stage.
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2019 wind and solar capacities from the CAISO Master Control Area
Generating Capability List.28,36 We use linear scaling because there were
already large amounts of solar and wind capacity online in 2019 in
CAISO in geographically diverse regions, and the diversity benefit of
new solar and wind additions is likely to be small as a result. The change
in demand from 2019 to 2030 is derived by linearly scaling up 2019
demand from CAISO OASIS using the ratio of the month-hourly aver-
age demand in the 2030year to the 2020year, though the overall
changes are small relative to that resulting from the growth in renewable
generating capacity.23 Using these scaled load, wind, and solar profiles,
the 2019 CAISO histogram 15-minute flexible ramping requirement
time series is scaled up to 2030 levels using the change in month-hourly
average net demand forecast error between 2019 and 2030. 2030
15-minute ramping requirements are summarized on a month-hour
basis in Fig. 6(b). We recognize that CAISO is planning to improve the
histogram calculation method well before 2030. We did not have access
to sample timeseries for the improved quantile regression method that
CAISO is planning to release in the near term nor can we predict what
longer term improvements CAISO will make by 2030. Thus, we
employed this approximate method to scale up incumbent reserves.

5. Hydroelectric and pumped hydroelectric resources

Historical 2019 data from the CAISO Daily Renewables
Watch42 is used to derive limitations on the aggregate fleet of
CAISO hydroelectric resources. Hydroelectric and pumped hydro-
electric resources, collectively referred to as “hydro” here, are mod-
eled in aggregate in PLEXOS. The total energy production from
hydro and pumped storage resources on each day from 2019 is
used to set daily energy production constraints in PLEXOS. In
addition, daily maximum and minimum fleet-wide output levels
observed on each day in 2019 are used to set the operational range
of the aggregated hydro units in PLEXOS. A maximum ramping
rate for hydro is set using historical 2019 output data. The fleet-
wide energy budget, operational range, and ramp rate limits are
assigned to Southern California Edison (SCE) and Pacific Gas and
Electric (PG&E) resources on a hydroelectric plant capacity-
weighted share. San Diego Gas and Electric (SDG&E) hydro is not
modeled because the nameplate capacity of SDG&E hydro resour-
ces is small relative to the CAISO fleet-wide capacity. Hydroelectric
operational parameters derived from 2019 data are also used for
2030 simulations.

FIG. 13. Month-hour average comparison
between historical 2019 CAISO operations
and PLEXOS benchmark simulation of
2019. PLEXOS data originates from the
5-minute dispatch stage.
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6. Import and export schedules

We focus on our analysis on the CAISO system and perform
unit commitment and dispatch for resources within the CAISO foot-
print. To represent ties with neighboring regions, we include fixed
import and export schedules for each modeling stage based on histor-
ical 2019 interchanges. Two import/export schedules are derived:
imports and exports from the Southwest (SW) are connected to the
SCE zone and imports and exports from the Northwest (NW) are
connected to the PG&E zone. Total net imports to CAISO from
external balancing areas are derived from the EIA Form 930.43

Fifteen- and 5-minute market net imports are derived from the
CAISO OASIS data28 with Day þ Hour ahead stage net imports cal-
culated as the difference between total and sub-hourly net imports.
Balancing area interchange schedules from CAISO OASIS are aggre-
gated into NW and SW zones, creating two import/export schedules.
Historical market prices from the Mid-Columbia and Palo Verde
nodes are used as a component of the total production costs shown
in Table III and Table VII; these historical market prices do not
influence import and export dynamics because import/export sched-
ules are not allowed to change in PLEXOS. We keep import/export
schedules constant at 2019 levels for 2030 simulations.

7. Cost treatment

All costs are reported in $2019.

APPENDIX C: SUPPLEMENTAL PLEXOS ANALYSIS:
SOLAR PROVIDING FLEXIBLE RAMPING CAPACITY

In this section, we provide an exploration of the value of
utility-scale solar resources providing flexible ramping capacity.

As the amount of energy produced by variable renewable
resources increases over time, so does the potential to use these
resources for balancing and ramping. In the PLEXOS modeling

presented in the main paper, we have not included variable renew-
able resources (wind and solar) as resources that can contribute to
ramping requirements. Previous work has highlighted that variable
renewable resources have the technical capabilities to provide short-
term balancing services44–46 and has also demonstrated production
cost and greenhouse gas emissions savings associated with their
participation.25,47 Despite these capabilities and potential savings,
variable renewable resources do not currently provide meaningful
contributions to ramping or operational reserve capacity in the
CAISO or other organized electricity markets in the United States.

We use PLEXOS to simulate utility-scale solar, the variable
renewable resource in the CAISO system with the largest installed
capacity, providing 15-minute and 5-minute flexible ramping capac-
ity (Solar FRP) in both 2019 and 2030. All Solar FRP simulations use
machine learning flexible ramping requirements. We limit downward
FRP from utility-scale solar to the solar production potential minus
any curtailment, which is equivalent to the energy setpoint of the
solar resource. We limit upward FRP from utility-scale solar to the
level of solar curtailment because solar must be able to increase out-
put to provide upward FRP and cannot do so if it is not curtailed. We
do not limit solar FRP provision based on solar forecast error, which
implies that our results are an upper bound on the benefits of solar
FRP; in practice, system operators would need to consider solar fore-
cast error when committing ramping capacity. In the future, it may
be possible to use short-term probabilistic forecasts of variable renew-
able uncertainty, potentially provided by a machine learning model
like the one presented in this paper, to bound the ability of variable
renewable resources to provide flexibility to ramping and reserve
products based on solar forecast uncertainty.

Production costs are reduced by 0.5% when solar provides
flexible ramping for the 2030 Low Battery portfolio (Table VII).
Solar can be particularly effective at providing downward ramping,
as solar resources do not need to be pre-curtailed to do so. The mar-
ginal cost of meeting the downward flexible ramping requirement

TABLE VII. Savings from including utility-scale solar as a resource that can provide 15-minute flexible ramping capacity. Savings are calculated as the change in the 5-minute
RTD stage that results from including solar as a resource that can provide flexible ramping in the upstream FMM stage as well as the 5-minute RTD stage.

Metric Units

Difference: solar cannot provide flexible ramping
minus solar can provide flexible ramping

2019 2030 low battery 2030 high battery

Production cost savings % of annual production cost 0.3% 0.5% 0.0%
$M/yr $16 $29 $1

Total cost savings (renewable
curtailment reduction valued
at $18/MWh)

$M/yr $21 $43 $2

GHG savings % of annual emissions 0.3% 0.7% 0.0%
MMTCO2/yr 0.1 0.3 0.0

Natural gas generation
reduction

% of annual natural gas generation 0.6% 1.2% 0.2%
GWh/yr 332 746 76

Curtailment reduction % of wind and solar generation potential 0.9% 1.0% 0.1%
GWh/yr 247 750 61

Decrease in frequency of
RT5 energy prices above $150/MWh

% of 5-minute intervals 0.1% 0.1% 0.1%
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(the downward FRP shadow price) drops steeply between a model
run where solar cannot provide FRP and one in which it can
(Fig. 14, top left), indicating that it is challenging to provide down-
ward reserves in a highly renewable grid without large contributions
from either solar or battery resources, especially during periods of
curtailment. For a solar resource to provide upward ramping, it
must be pre-curtailed; this requirement is frequently met in the
2030 Low Battery portfolio because the relative lack of battery
capacity creates long periods of daytime renewable curtailment.
With the 2030 Low Battery portfolio, solar FRP is effective at reduc-
ing the cost to provide upward ramping capacity (Fig. 14, top right)
because if already curtailed, solar generation has no marginal cost
to provide upward ramping.

When we increase the capacity of battery storage by moving to
the 2030 High Battery portfolio, the incremental value of solar-
provided FRP drops (Table VII), which is a result that is broadly
consistent with recent work from the National Renewable Energy
Laboratory.27 As we have previously discussed, the marginal cost to
provide flexible ramping capacity can approach zero in most hours
with high enough levels of battery capacity; adding solar flexible
ramping to a system with low FRP procurement costs results in low

benefits of doing so. The bottom left panel of Fig. 14 shows that
solar FRP reduces downward FRP prices during sunset; by sunset,
batteries need to be fully charged to prepare for a full discharge
cycle in the nighttime. Batteries cannot simultaneously be fully
charged and provide downward ramping because providing down-
ward ramping requires the batteries to be prepared for additional
charging; solar can lower costs by providing downward ramping
near sunset. Solar is not frequently curtailed near sunrise and is,
therefore, not particularly effective at reducing the early morning
upward FRP cost (bottom right panel of Fig. 14).

Reflecting a moderate near-term level of value, savings from
solar FRP with the 2019 resource portfolio are found to be interme-
diate relative to the 2030 Low and High Battery portfolios
(Tables VII).

APPENDIX D: SUPPLEMENTAL PLEXOS RESULTS:
PRODUCTION COST SAVINGS BY RESOURCE
CATEGORY

Production cost savings by resource category for results shown
in Tables III and VII.

FIG. 14. 15-minute flexible ramping requirement prices for the 2030 Low Battery (top) and High Battery portfolios (bottom), with and without solar as a resource that can
provide 15-minute flexible ramping capacity (FRP). Prices are presented as an hourly average over the year.
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