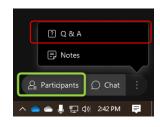
Avoided Cost Calculator 2022 Update

August 25, 2021 Workshop

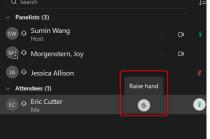


California Public Utilities Commission

General Information

- Please use the Q&A function to ask questions. (That leaves the chat free for general announcements.)
- Please use the "raise hand" function if you want ask a question verbally and we will unmute you.
- This workshop will be recorded and the recording and the slides will be made available.

Q&A Panel Lower-Right



Raise Hand Lower-Middle

Raise hand

Participants Panel

Upper-Right Participants (4) 9. Search

Unmute

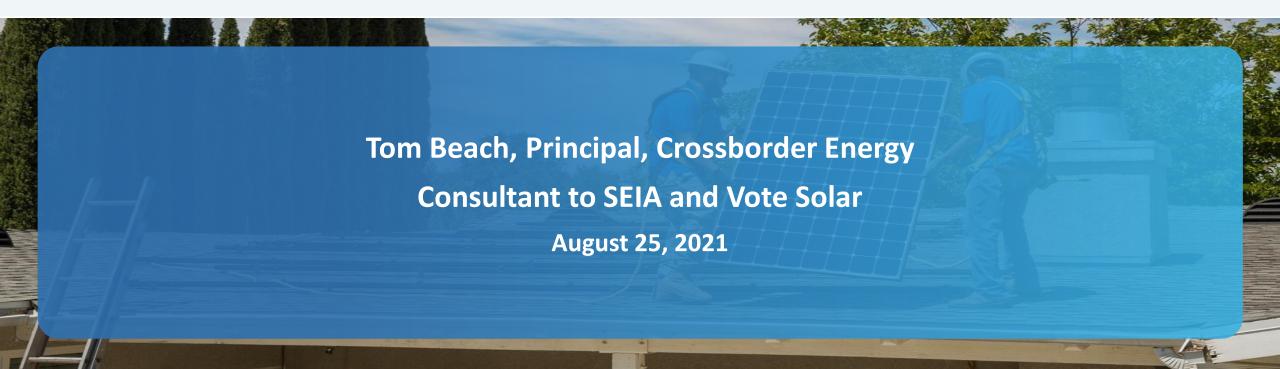
A host will unmute you – then you must click button to unmute yourself

IDER Proceeding

- R.14-10-003 remains open for the 2022 ACC update
- R.14-10-003 will not address ACC-related issues that are not pertinent to the 2022 ACC update (e.g., defining "minor" and "major" updates)
- However, some of these issues will be discuss during the workshop
- An IDER successor proceeding will open (likely before the end of 2021)
- The new proceeding will focus on customer programs (as opposed to DERs in general), including:
 - Other ACC-related issues
 - Other cost-effectiveness-related issues
 - Other customer program issues

Topics

Topic 1 E3 Proposal: Develop Resource Adequacy, GHG and 'Clean Energy' values from IRP Topic 2 Energy Division/E3 proposal: SERVM results review Topic 3 E3 Proposal: Allocation of Capacity Value Topic 4 E3 Proposal: Gas Price Forecasts Topic 5 E3 Presentation on proposed topics for possible additional research: Topic 6 Discussion: Application of Avoided Costs/Using the ACC Topic 7 Discussion: GHG adder value, gas transportation rates, and other issues related to natural gas 8 sigot **Discussion: Clarify definition of major vs. minor ACC updates** Popic 9 Energy Division presentation: Use of inputs, modeling and results from other CPUC proceedings


Session	9:00	Introductory remarks and procedural matters
1	9:15	SEIA presentation on multiple topics and discussion
2	10:00	E3 Proposal: Develop Resource Adequacy, GHG and 'Clean Energy' values from IRP (Topic 1)
	10:35	break
3	10:45	E3 Proposal: Allocation of Capacity Value (Topic 3)
4	11:05	E3 Proposal: Gas Price Forecasts (Topic 4)
5	11:20	E3 Presentation on proposed topics for possible additional research (Topic 5)
	12:05	lunch break
6	1:00	Use of the Avoided Cost Calculator (Topic 6)
7	2:00	Energy Division presentation: Use of inputs, modeling and results from other CPUC proceedings (Topic 9)
	2:45	break
8	3:00	Energy Division/E3 proposals: SERVM results review and related issues (Topic 2)
9	3:45	Discussion: GHG adder value and other issues related to the natural gas ACC (Topic 7)
10	4:15	Discussion: Clarify definition of "major" and "minor" updates (Topic 8)
	4:30	Additional discussion, questions, and clarifications (if needed)
	5:00	end

Session 1

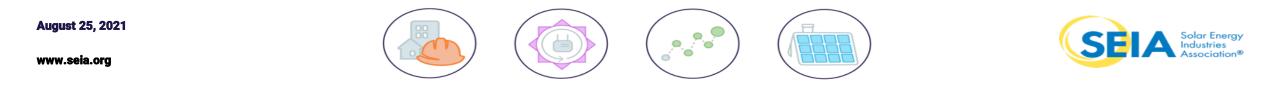
Presentation by Solar Energy Industries Association (SEIA)

2022 Avoided Cost Calculator: Issues for a Major Update

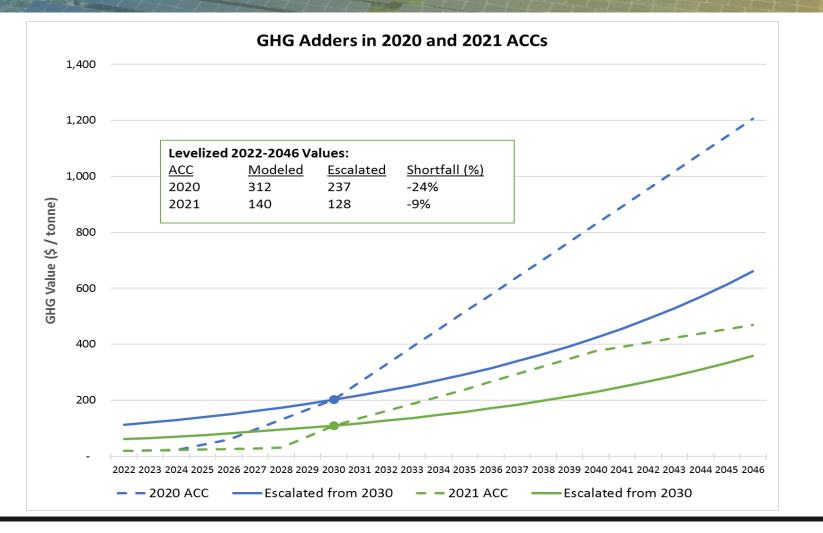
www.seia.org

About SEIA and Vote Solar

- The **Solar Energy Industries Association** (SEIA[®]) is the national trade association of the U.S. solar energy industry, which now employs more than 250,000 Americans. SEIA represents its 1,000 member organizations that promote, manufacture, install and support the development of solar energy.
- Vote Solar advocates to make solar affordable and accessible to more Americans. Founded in 2002, Vote Solar works at the state level across the U.S. to support the policies and programs needed to repower the electric grid with clean energy.


- Issues may overlap with other topics presented today.
- Issues are still under review.
- We reserve the right to address other issues not listed.
- Overarching concerns <u>not</u> addressed:
 - Volatility of ACC results
 - Lack of transparency in ACC modeling with RESOLVE / SERVM
 - Complexity of ACC modeling

SELA Solar Associ


August 25, 2021

Use of the RESOLVE GHG Adder [1]

- Shift to use of the 2032 GHG Adder
 - 10 years in the future
 - PSP will have detailed resource choices for the 2023-2032 decade
- Alternative #1 use yearly GHG Adders from 2023-2052
 - Without discounting or escalating
 - Uses more data from the IRP results
- Alternative #2 use the 2032 GHG Adder, but adjust the rate used to discount or escalate the rate so that the NPV of the discounted/escalated GHG Adder from 2023-2052 equals the NPV of the yearly GHG Adders from RESOLVE

Use of the RESOLVE GHG Adder [2]

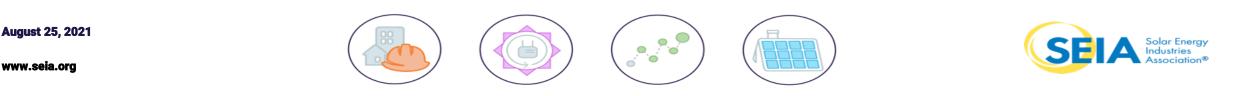
• ?

Ò

August 25, 2021

www.seia.org

Comparing RESOLVE and/or SERVM to Other Models


- Other PCMs are available, and are used in California
 PLEXOS
- New models that combine resource planning with full PCM
 - Vibrant Clean Energy's WIS:domP
- Parties should have the opportunity to present other modeling at the appropriate time in this proceeding
 - As a check on reasonableness of RESOLVE/SERVM results
 - To use to replace RESOLVE and/or SERVM
 - As research toward possible future use in the ACC

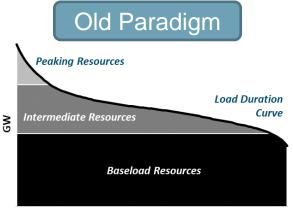
www.seia.ord

Other Avoided Cost Issues to be explored

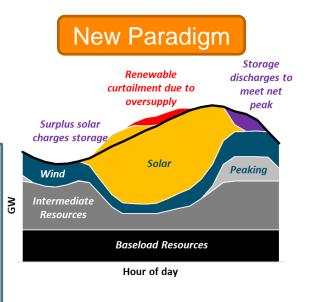
- Allocating marginal / avoided costs to hours
 - Use of Peak Capacity Allocation Factors
 - Use of GRC methods
- Scarcity Pricing adjustment to SERVM results
- Include non-TOD marginal costs, similar to PG&E secondary distribution
- Add avoided congestion as well as avoided losses
 - Is congestion included in PCM results?
 - Use DLAP prices instead of trade hub prices
- Avoided methane leakage
 - Explore the use of wellhead-to-burner-tip values for methane leakage associated with all natural gas burned in California power plants and with gas-fired imports
 - Similar to the wells-to-wheels assessment for LCFS

Session 2 (Topic 1)

E3 Proposal to develop Resource Adequacy, GHG and 'Clean Energy' values from IRP


Topic 1: Develop Resource Adequacy, GHG and 'Clean Energy' values from IRP

Better definition of discrete avoided cost values


- Historically the ACC has relied on a single 'proxy' marginal resource to calculate values for some categories:
 - e.g., net cost of new entry (CONE) of a combustion turbine, and now of energy storage
- Solar + storage simultaneously provides GHG, Renewable/Clean Energy and Resource Adequacy (RA) value
- IRP RESOLVE capacity expansion modeling does not provide discrete values for each ACC category
 - Multiple constraints are incorporated in a single optimization and a given resource can provide multiple values
- + Challenge: Defining discrete, mutually exclusive avoided cost values for GHG, Renewable/Clean Energy and RA without double counting

Renewable Portfolio Standard (RPS): Renewable energy that helps meet an RPS target has a premium Renewable Energy Credit (REC) or RPS value.

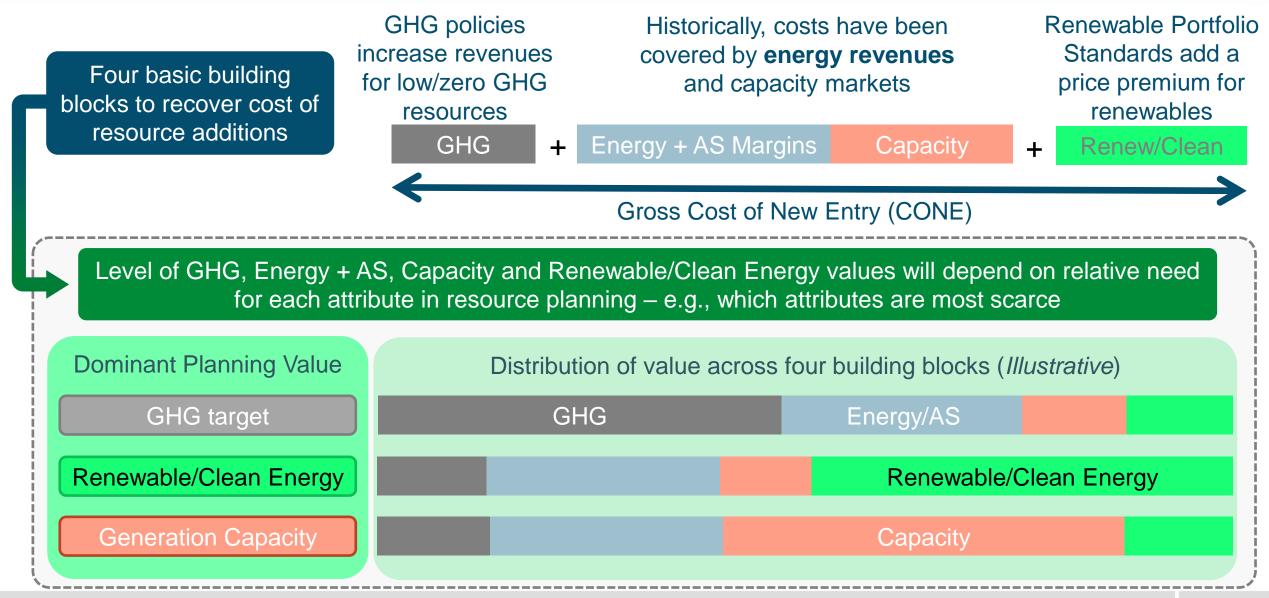
SB100 Clean Energy Standard: SB100 introduces a new, related Clean Energy Standard (CES). Carbon free resources that help meet a CES target have a commensurate Clean Energy or CES value.

Hour of year, sorted

S Cost recovery in decarbonized system

Historically, costs have been covered by **energy revenues** and capacity markets

Energy + AS Margins Ca


Capacity

Gross Cost of New Entry (CONE)

Cost recovery in decarbonized system

Cost recovery in decarbonized system

Energy+Environmental Economics

Proposed Approach

Resource Portfolio Builds	Energy and AS Prices	Calculate Net CONE for each resource	Calculate projected GHG, RA, RPS/CES prices
From IRP RESOLVE capacity expansion modeling	 Run SERVM production simulation model with IRP portfolios Used to calculate market revenue for each resource in portfolio 	 Remaining cost be recovered through a combination of: GHG Resource Adequacy RPS / CES 	 Develop supply stack for planning value streams to determine marginal planning value avoided cost Subject to cost recovery & risk requirements for each resource type

- + Increasingly stringent policy targets will increase value for GHG and Renewable/Clean energy over time
- + IRP will develop least cost resource portfolios to achieve policy targets that include a combination of wind, solar, storage and other supply (and demand) side resources
- + In total, each resource should earn sufficient energy, ancillary service, GHG, renewable/clean energy and RA revenues to achieve target rates of return
 - Some value will be compensated in competitive wholesale markets (higher risk/less bankable)
 - Some value will be compensated in contracted PPAs with Local Service Entities (LSEs) (lower risk/more bankable)
- + Efficient markets will trend toward equilibrium with new entry limiting opportunity for excess rents over time

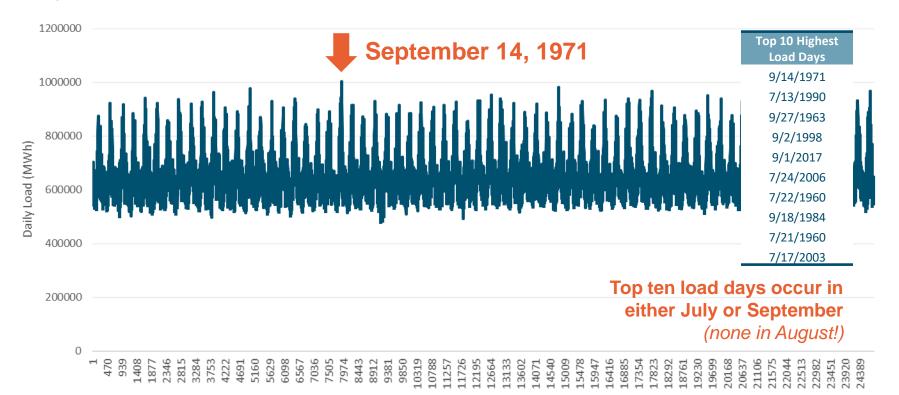
Questions for Stakeholders: Other key guiding principles crucial for developing approach?

Session 3 (Topic 3)

E3 Proposal on Allocation of Capacity Value

Topic 3: Allocation of Capacity Value

The issue: month-hour heat maps concentrate value in September


- Multiple projects have used "heat-map" format outputs from RECAP, either as a tool to display results or as a means to translate LOLP outputs to other models (e.g. CPUC ACC)
- These efforts have raised some concern that RECAP may be artificially concentrating reliability value in September
- + Multiple theories have been offered:
 - Extreme load events in historical record artificially concentrated in September?
 - Probability of high loads combined with seasonal waning solar output?

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0	1-0			÷
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-3	L /	0_01	loss-	- <u>10</u> -
6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	load	d hou	urs in	REC	AP
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01			n Sep		
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0.04	-	-		-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.25	0.33	0.18	0.12	0.01	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.03	0.01	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Heat Map of LOLH Based on California, 2019

Daily California load, 1950-2017

 It is not necessarily a problem that there is a single day with the highest load conditions—but it is probably problematic that we always map that day to September

Is spreading the answer? It helps...

Heat Map of LOLH Based on California, 2019

Based strictly on calendar dates of RECAP simulation

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-0	10		-	÷
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_3	ι /	O_ of	loss	- <u>0</u> [-
6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	loa	d hou	urs in	REC	CAP
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	⁻ 0C	cur ir	n Sep	oteml	oer
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.04	_	-		1	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.25	0.33	0.18	0.12	0.01	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.03	0.01	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Heat Map of LOLH Based on California, 2019 (Smoothing Applied)

Assuming each day is equally likely to fall within a window of +/- 7 days of its calendar date

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	_	<u>.</u>	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	75	%	of los	s-of-	loād	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	hours	s in R	ECA				-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-Se	epter	nber	-	0.01	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.03	0.09	0.01	0.01	-	I	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.21	0.26	0.15	0.10	0.01	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.03	0.03	0.02	0.01	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

- Improvements to Loss of Load Probability (LOLP) to account for climate change will progress in other proceedings
- + In the meantime, is spreading of available LOLP results to other months a reasonable approach for ACC?
- + Alternatively, should SERVM be used to allocate generation capacity annual values to the hours in place of RECAP?

Comparison of Expected Served Energy (EUE) from RECAP and SERVM

Heat Map of EUE Based on California, 2030 (RECAP)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.5	1.6	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11.8	115.0	56.8	109.4	431.0	143.1	8.7
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Expected Unserved Energy in RECAP concentrates in September

Heat Map of EUE Based on California, 2030 (SERVM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	-	-	-	-	-	-	-	-	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	0.0	7.1	0.2	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-
4	-	-	-	-	-	-	-	0.0	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.6	0.8	-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5	16.3	47.1	20.6	-	0.2
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.4	3.0	11.7	3.7	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	2.1	22.0	21.9	14.1	1.6	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Expected Unserved Energy in SERVM spreads over in summer late afternoon and early winter morning

Session 4 (Topic 4)

E3 Proposal on Gas Price Forecasts

Topic 4: Gas Price Forecasts

- + The ACC uses near-term market forward prices in place of the CEC IEPR gas price forecast
- This approach has its roots in the Market Price Referent (MRP) comparing the cost of renewables to a combined cycle combustion turbine (CCGT)
- In the current planning paradigm market-based gas price forecasts are less important than consistency across planning proceedings and in evaluation of electrification.
- Proposal is to remove unnecessary complexity of alternative gas price forecast for ACC and simply use the same CEC IEPR forecast as other proceedings

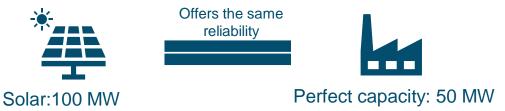
Future/Forward	May	2021	Jun	2021	Jul	2021	Aug	2021	Sep	2021	Oct	2021
4/12/2021	\$	2.61	\$	3.11	\$	3.80	\$	3.97	\$	3.62	\$	3.42
4/9/2021	\$	2.56	\$	3.02	\$	3.73	\$	3.90	\$	3.57	\$	3.37
4/8/2021	\$	2.47	\$	2.98	\$	3.67	\$	3.84	\$	3.52	\$	3.32
4/7/2021	\$	2.46	\$	2.96	\$	3.61	\$	3.78	\$	3.47	\$	3.26
4/6/2021	\$	2.40	\$	2.92	\$	3.58	\$	3.75	\$	3.44	\$	3.22
4/5/2021	\$	2.40	\$	2.89	\$	3.51	\$	3.67	\$	3.37	\$	3.18
4/1/2021	\$	2.58	\$	3.06	\$	3.69	\$	3.84	\$	3.53	\$	3.33
3/31/2021	\$	2.51	\$	2.99	\$	3.62	\$	3.77	\$	3.46	\$	3.26
3/30/2021	\$	2.54	\$	2.98	\$	3.60	\$	3.75	\$	3.43	\$	3.14
3/29/2021	\$	2.59	\$	3.01	\$	3.63	\$	3.78	\$	3.47	\$	3.17
3/26/2021	\$	2.56	\$	2.97	\$	3.57	\$	3.73	\$	3.41	\$	3.15
3/25/2021	\$	2.52	\$	2.93	\$	3.51	\$	3.66	\$	3.35	\$	3.08
3/24/2021	\$	2.47	\$	2.88	\$	3.47	\$	3.62	\$	3.31	\$	3.03
3/23/2021	\$	2.50	\$	2.92	\$	3.53	\$	3.69	\$	3.38	\$	3.06
3/22/2021	\$	2.59	\$	3.00	\$	3.63	\$	3.78	\$	3.47	\$	3.15
3/19/2021	Ś	2.54	Ś	2.95	Ś	3.51	Ś	3.66	Ś	3.34	Ś	3.05
3/18/2021	Ś	2.46	Ś	2.84	Ś	3.41	Ś	3.56	Ś	3.25	Ś	2.97
3/17/2021	Ś	2.46	Ś	2.80	Ś	3.35	Ś	3.50	Ś	3.19	Ś	2.95
3/16/2021	Ś	2.54	Ś	2.90	Ś	3.45	Ś	3.61	Ś	3.30	Ś	3.05
3/15/2021	Ś	2.45	Ś	2.81	Ś	3.37	Ś	3.52	Ś	3.21	Ś	2.96
3/12/2021	Ś	2.56	Ś	2.92	Ś	3.47	Ś	3.62	Ś	3.31	Ś	3.04
3/11/2021	\$	2.66	Ś	3.01	Ś	3.56	Ś	3.70	\$	3.39	Ś	3.14
2-Day Average	\$	2.52	Ś	2.95	Ś	3.56	Ś	3.71	Ś	3.40	Ś	3.15

ACC averages 1 month (21-22 business days) of forward gas prices for each contract month

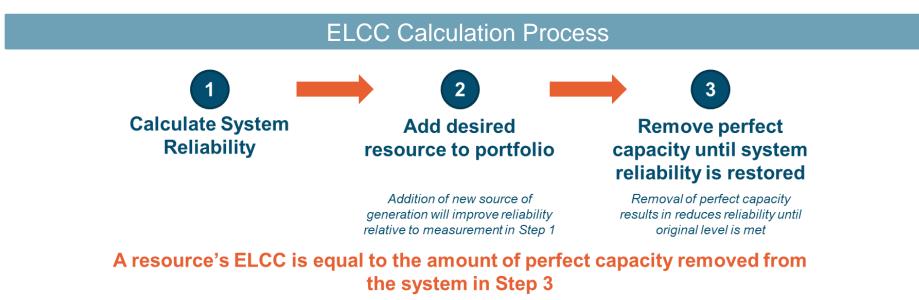
Session 5 (Topic 5)

E3 Proposals on topics for possible additional research:

- ELCC in Avoided Costs
- Capacity Value of Dispatchable DERs
- Marginal Distribution Costs

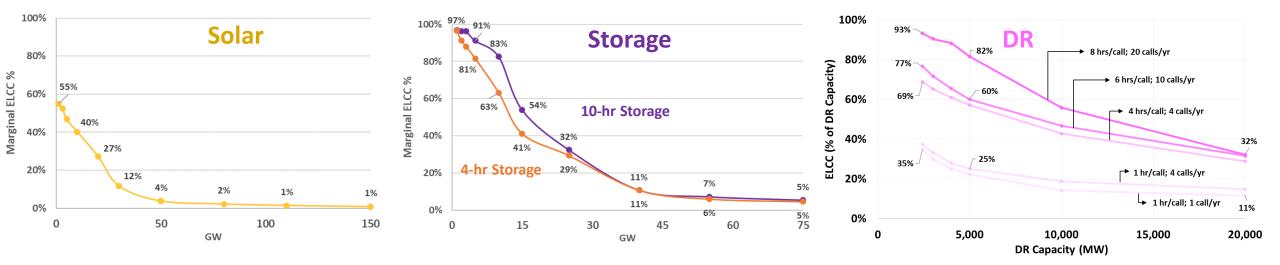


Topic 5: Proposed Topics for Possible Additional Research



Effective Load Carrying Capability (ELCC) in Avoided Costs

- + IRP proceedings have been undertaken work to implement and enhance the modeling of ELCC values for different types of supply-side resources. But this hasn't been done for the demand-side resources evaluated in ACC
- + Effective load carrying capability (ELCC) measures the capacity contribution of a resource
- + For example, 50% ELCC of a solar generator


+ Any resource that doesn't offer perfect capacity will have an ELCC value less than 100%

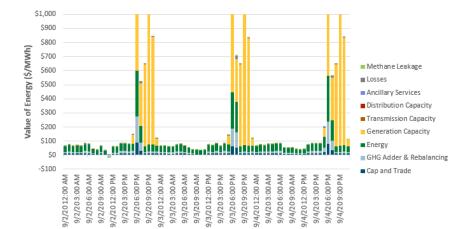
ELCC differs by resource type and declines with increasing penetration

 Recent proceedings have identified declining ELCC value associated with increasing penetrations of energy storage, solar and demand response (DR)

- Solar ELCC decays quickly due to day-time saturation which shifts the net peak load to the night-time
- Storage ELCC decays quickly due to its energy limitations and lack of available energy to charge
- DR ELCC declines owing to saturation of energy-limited resources on the system, particularly storage

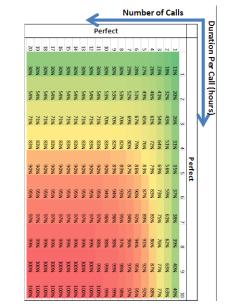
- + Currently, ACC only provides a single set of capacity value based on the Net CONE of energy storage, with a corresponding declining ELCC based on IRP modeling
- + Currently, DR is the only distributed resource that has a resource specific ELCC calculation for determining capacity value
 - Applied outside the ACC in the DR Reporting Template
- + The capacity value of DER is receiving increased attention in a number of proceedings, and specific ELCC values are modeled for wind, solar, storage and DR in the IRP proceedings

Questions for Stakeholders:


- Should the ACC also provide resource specific calculations of ELCCs for different types of DER, to be more consistent with the IRP?
- Should different ELCCs for specific DER be incorporated in the 2022 ACC Update?

+ The ACC allocates \$/kW-Yr. generation capacity value to individual peak hours on a \$/kWh basis

- For cost-effectiveness evaluation, the generation capacity value depends on how well the DER load shapes are coincident with the peak hours
- + The fixed load shape approach might not work well for dispatchable DER because
 - Dispatchable DER are flexible to be shifted to meet capacity needs and a fixed shape approach might not capture its full value
- + Should other potentially dispatchable resources such as energy storage or EVs also be permitted to use an alternative ELCC based approach to calculate generation capacity value?
- + This would be <u>an alternative</u>, not in addition to, the current approach of allocation capacity value to individual hours



Allocation of generation capacity value to peak hours over three days in September

Capacity Value of Dispatchable DER

- In the DR proceeding, DR uses an alternative ELCC based method (A Factor) to account for when the program can be potentially called and the frequency and duration limits of calls
 - A Factor = Availability Factor X Dispatchability Factor

						Weeko	lay					
	January	February	March	April	May	June	July	August	September	October	November	Decembe
1	0	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	2.675E-13	2.062E-13	0	0	0	0
10	0	0	0	0	0	0	1.313E-08	7.171E-11	2.185E-13	0	0	0
11	0	0	0	0	0	0	1.045E-06	4.362E-07	2.632E-09	0	0	0
12	0	0	0	0	0	2.03E-13	5.756E-05	8.374E-05	4.143E-06	0	0	0
13	0	0	0	0	1.816E-13	9.366E-12	0.0017541	0.0004761	0.0003559	1.886E-13	0	0
14	0	0	0	0	5.05E-12	4.108E-08	0.0175846	0.0089215	0.0095088	9.202E-13	0	0
15	0	0	0	0	8.296E-10	1.001E-05	0.0418717	0.0609029	0.026851	4.728E-10	0	0
16	0	0	0	0	1.356E-08	0.0001713	0.0958275	0.154044	0.0529714	1.389E-08	0	0
17	0	0	0	0	1.051E-08	0.0002752	0.0863699	0.1643968	0.0468803	2.642E-10	0	0
18	0	0	0	0	5.911E-10	5.262E-05	0.0235108	0.0685829	0.0151693	5.297E-12	0	0
19	0	0	0	0	1.487E-12	1.162E-06	0.0033193	0.0233013	0.0244126	0	0	0
20	0	0	0	0	2.557E-13	2.037E-07	0.003468	0.0056573	0.0148689	4.159E-13	0	0
21	0	0	0	0	2.613E-13	5.463E-08	0.0002864	0.001502	0.0004685	0	0	0
22	0	0	0	0	0	3.257E-12	1.6E-07	1.285E-06	3.183E-10	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0
1	n.a.	n.a.	0	0	0	0	0	0	0	0	n.a.	n.a.
											Sum =	0.

- Availability factor is the sum of normalized LOLP values during which DR is available
- Dispatchability factor is a function of call frequency and duration limits of DR program

Questions for Stakeholders:

- Should the ACC direct or permit alternative calculations of capacity value for dispatchable DER?
- Should the approach used for DR also be applicable for other dispatchable DER?
- Should the approach also be directed or permitted for T&D capacity value?

Two approaches to marginal distribution costs...

Identify load growth related distribution costs (that can be avoided with DER)

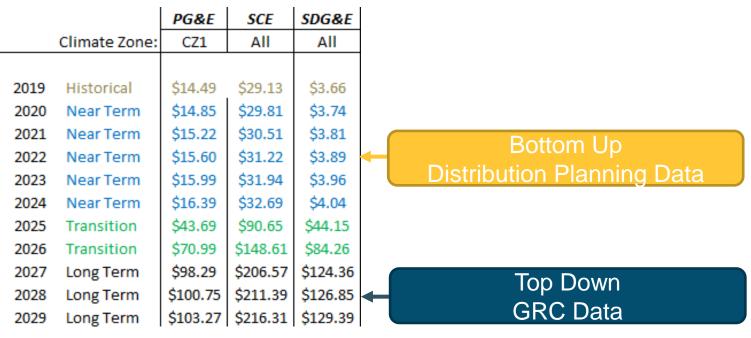
Top Down FERC & GRC Data

 Identify load growth related distribution cost categories

 $\frac{Distribution Costs (\$)}{Load Growth (kW)} = $/kW-Yr.*$

itle of the FERC Account	12/31/2015	12/31/2014
DISTRIBUTION PLANT		
Land and Land Rights	30,914	29,994
Structures and Improvements	66 625	63 410
Station Equipment	481,520	468,114
Storage Battery Equipment	0	0
Poles, Towers, and Fixtures	416,490	401,293
Overhead Conductors and Devices	360,295	345,450
Underground Conduit	121,776	114,567
Underground Conductors and Devices	469,695	450,387
Line transformers	517,697	491,463
Services	342,869	327,062
Meters	109,902	106,881
Installations on Customer Premises	55,853	54,659
Leased Property on Customer Premises	47	47
Street Lighting and Signal Systems	63,417	62,372
Asset Retirement Costs for Distribution Production	235	235
TOTAL Distribution Plant (Total of lines 60 thru 74)	3,037,337	2,915,934

SNL FERC Form 1 Excel Template


Bottom Up Distribution Resource Plans

- + Identify grid needs over next 5 years circuit by circuit
- Counterfactual analysis of grid needs without DER included in forecast
- 'x' kW of DER avoids smaller 'y' kW of upgrades

 $\frac{Avoided Upgrade Costs (\$)}{DER Forecast (kW)} = $/kW-Yr.*$

* OK, it is more complicated but you get the idea

2020 DER Avoided Cost Calculator

+ Distribution Resource Plan approach much lower

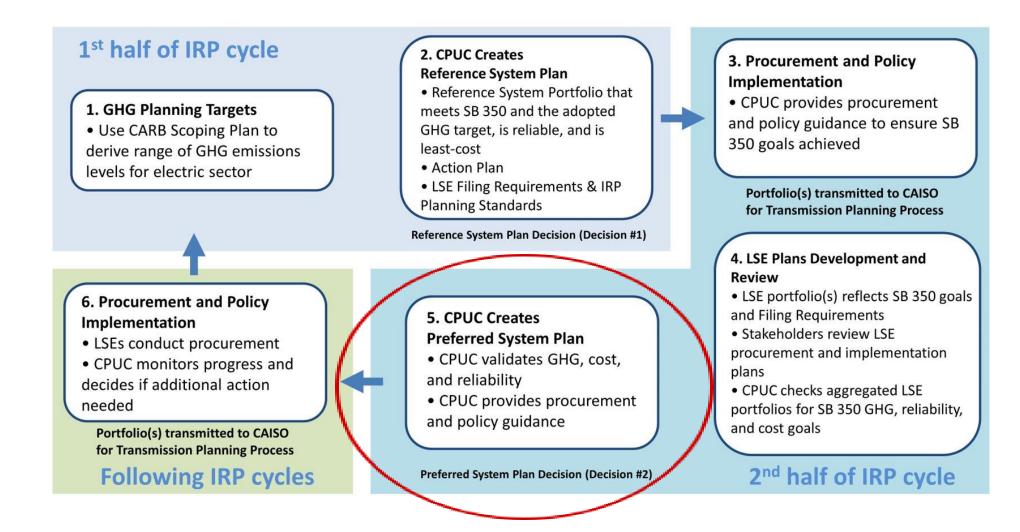
- Distribution systems built with headroom
- 5-year distribution plan will not include all long-term costs
- FERC and GRC categories are very broad and include more 'unspecified' costs

Session 6 (Topic 3)

Application of Avoided Costs/Using the ACC

Discussion Questions

- How should we define "avoided cost?" Which avoided costs (or types of avoided costs) should be in the avoided calculator?
- How should we deal with avoided costs that are not marginal and/or hourly costs?
- Should the ACC incorporate the avoided cost of natural gas infrastructure adopted in the EE proceeding?
- Are there other avoided costs that should be adopted in 2022?
- Can the ACC provide accurate information for all uses (ex ante and ex post cost-effectiveness, GHG emission estimates, total system benefits, informing potential & goals studies and rates design, etc.)?
- Should the ACC be used to estimate increased supply costs (resulting from fuel substitution and fuel switching programs)?


Session 7 (Topic 9)

Energy Division presentation on use of inputs, modeling and results from other CPUC proceedings

Distribution Planning

- Grid Needs Assessment and Distribution Deferral Opportunity Reports are filed annually on August 15 by PG&E, SDG&E, and SCE.
- The GNA identifies grid needs and is used to develop the DDOR.
- The DDOR identifies traditional infrastructure projects that could be avoided or deferred with DERs to address a need identified in the GNA.
- An advisory group of stakeholders called the Distribution Planning Advisory Group reviews the GNA/DDOR filings. After review, the utilities seek to procure DERs for the selected opportunities.
- This information is used as inputs to the ACC to determine short term avoided distribution costs.
- In 2020, there was little additional data as compared with 2019, so the 2021 ACC did not update this avoided cost.

Integrated Resource Planning (IRP) Process Overview

Where we are in the IRP Process

- **RESOLVE updates have been included in the** Preferred System Plan (PSP) ruling
 - Party opening comments due September 27
 - Party reply comments due October 11
- PSP final decision by the end of 2021

Activity	Timing
Ruling on PSP & TPP (Including RESOLVE updates)	August 2021
Party comments and replies due	September – October 2021
Comment review, PSP portfolio adjustments including RESOLVE runs and production cost modeling of PSP portfolio	September – October 2021
Proposed Decision	November 2021
Final Decision	December 2021

IRP RESOLVE Modeling for ACC

- Using the 2021 Preferred System Plan for 2022 ACC
 - In what proceeding(s) should the No New DER assumptions and results be released?
 - What should be the timing of the release?
 - What should be included in this release?
- Long-term Avoided Costs from IRP RESOLVE Modeling
 - While the next IRP cycle schedule is in flux, we anticipate continuing to support IDER proceeding and their need for updated RESOLVE modeling.
 - Given the uncertainly of IRP timing, and the need to use current IRP data in the ACC, how do we develop a long-term ACC update schedule?

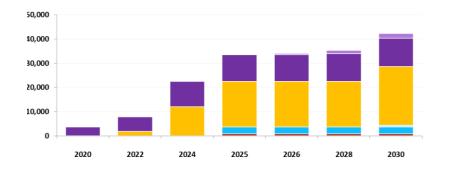
Session 8 (Topic 2)

SERVM/RESOLVE/ACC results review

Topic 2: SERVM Results Review

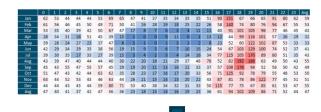
Energy component of the avoided costs come from SERVM and adjusted by E3

+ Methodology to calculate energy avoided costs

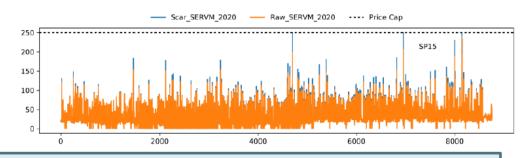

Integrated Resource Plan (CPUC + E3)

CPUC Integrated Resource Planning (IRP) determines the resource portfolio that needs to be built in California

Uses E3's RESOLVE model



Took out DERs in IRP Preferred System Plan and created a counterfactual scenario to identify resource portfolio without DERs (No New DER)



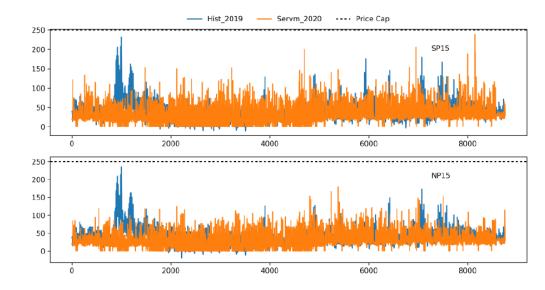
CPUC Energy Division

CPUC ran production simulation model (SERVM)
 to get hourly energy and ancillary services prices under the No New DER scenario

E3 Scarcity Price Adjustment

SERVM results and ACC results are in Pacific Standard Time (PST)

Energy+Environmental Economics



- In previous ACC, SERVM was only run up to 10 years and E3 inflated the prices to extrapolate avoided energy costs to 2050
- In the 2022 ACC, E3 proposes a 2045 SERVM run to better represent prices and heat rates after 2030 so that it will be more consistent IRP
- To improve the efficiency of the review, E3 will continue to release new data to help review the price results
- + Examples of the types of data we will release are shown on the next slides

Data provided in the 2021 ACC Review

- + RESOLVE portfolio build (PSP, No New DER) on the IRP website
- + E3 shared the raw dispatch results of two example weeks in 2023 and 2029, removing individual plant identifiers
- + In the 2021 ACC documentation, E3 also published
 - Comparisons of the historical and SERVM prices in timeseries and price duration curve format
 - Heatmaps of energy, ancillary service prices in snapshot years

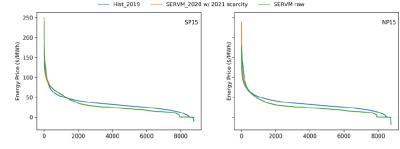


Figure 11. Impact of current year's scarcity adjustment on raw SERVM prices relative to historical data

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Avg
Jan	55	48	46	45	44	53	53	53	45	40	41	34	34	35	35	52	90	126	64	52	55	74	70	50	54
Feb	53	50	45	45	45	48	65	51	38	24	26	19	17	25	21	26	57	96	74	66	66	89	65	50	4
Mar	54	36	40	40	43	51	65	35	17	9	7	6	3	4	5	11	39	72	114	133	86	64	40	43	4
Apr	26	33	25	16	46	29	39	13	1	0	0	0	11	0	1	13	10	44	91	130	70	33	20	18	2
May	35	24	21	24	21	34	44	4	1	1	0	1	5	3	3	14	29	59	64	121	83	59	42	29	3
Jun	40	29	32	30	37	45	53	18	16	8	5	6	8	12	18	39	59	75	100	136	100	60	45	38	4
Jul	47	28	35	17	32	28	35	18	3	4	2	3	4	9	17	35	62	77	102	172	105	68	48	34	4
Aug	45	39	46	42	42	43	37	29	22	20	18	21	32	32	39	46	46	74	199	166	57	51	43	41	5
Sep	44	43	47	49	53	48	42	29	19	20	11	13	16	22	28	36	55	115	184	82	56	64	45	41	4
Oct	48	43	42	42	44	47	50	36	27	23	18	16	17	21	33	57	63	116	97	63	67	49	49	43	4
Nov	46	46	47	50	41	45	58	40	25	21	16	14	15	16	22	42	64	71	72	74	99	61	43	51	4
Dec	44	48	52	43	44	55	56	56	45	38	38	34	31	31	32	48	106	70	92	64	76	57	46	46	5
Avg	45	39	40	37	41	44	50	32	21	17	15	14	16	18	21	35	57	83	105	105	77	61	46	40	4

 For the 2022 ACC, E3 could provide additional benchmarking to compare results from SERVM model with other production simulation models, acknowledging that there will be differences in modeling assumptions

2030 Energy Prices from SERVM for 2021 ACC Update

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Avg
Jan	55	48	46	45	44	53	53	53	45	40	41	34	34	35	35	52	90	126	64	52	55	74	70	50	54
Feb	53	50	45	45	45	48	65	51	38	24	26	19	17	25	21	26	57	96	74	66	66	89	65	50	48
Mar	54	36	40	40	43	51	65	35	17	9	7	6	3	4	5	11	39	72	114	133	86	64	40	43	42
Apr	26	33	25	16	46	29	39	13	1	0	0	0	11	0	1	13	10	44	91	130	70	33	20	18	28
May	35	24	21	24	21	34	44	4	1	1	0	1	5	3	3	14	29	59	64	121	83	59	42	29	30
Jun	40	29	32	30	37	45	53	18	16	8	5	6	8	12	18	39	59	75	100	136	100	60	45	38	42
Jul	47	28	35	17	32	28	35	18	3	4	2	3	4	9	17	35	62	77	102	172	105	68	48	34	41
Aug	45	39	46	42	42	43	37	29	22	20	18	21	32	32	39	46	46	74	199	166	57	51	43	41	51
Sep	44	43	47	49	53	48	42	29	19	20	11	13	16	22	28	36	55	115	184	82	56	64	45	41	49
Oct	48	43	42	42	44	47	50	36	27	23	18	16	17	21	33	57	63	116	97	63	67	49	49	43	46
Nov	46	46	47	50	41	45	58	40	25	21	16	14	15	16	22	42	64	71	72	74	99	61	43	51	45
Dec	44	48	52	43	44	55	56	56	45	38	38	34	31	31	32	48	106	70	92	64	76	57	46	46	52
Avg	45	39	40	37	41	44	50	32	21	17	15	14	16	18	21	35	57	83	105	105	77	61	46	40	44

2030 Energy Prices from SERVM from CEC TDV Plexos 2022 Update

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Avg
Jan	74	74	74	74	74	74	74	74	63	42	40	39	39	40	40	42	68	75	75	75	75	75	75	75	64
Feb	71	71	71	71	71	71	71	71	42	22	21	20	20	21	21	24	41	71	71	71	71	71	71	71	54
Mar	58	58	58	58	58	58	58	38	9	1	1	1	1	1	1	2	19	58	58	58	58	58	58	58	37
Apr	50	50	50	50	50	50	48	13	0	-3	-4	-4	-4	-4	-4	-3	1	44	50	50	50	50	50	50	28
May	48	48	48	48	48	48	28	3	-2	-3	-4	-4	-4	-3	-3	-2	8	39	48	48	48	48	48	48	26
Jun	51	51	51	51	51	51	26	9	5	4	4	4	4	4	4	4	15	43	53	62	53	53	53	52	31
Jul	65	65	65	65	65	65	64	33	22	21	21	21	21	21	21	22	31	60	66	70	66	66	66	66	48
Aug	72	72	72	72	72	72	71	46	29	27	27	27	27	27	28	28	42	71	73	73	73	73	72	72	55
Sep	71	71	71	71	71	71	71	44	19	18	18	18	18	18	19	22	48	71	71	71	71	71	71	71	52
Oct	69	69	69	69	69	69	69	52	22	19	19	19	19	20	19	20	65	69	69	69	69	69	69	69	52
Nov	69	68	68	68	68	69	69	68	29	26	26	25	25	25	26	35	69	69	69	69	69	69	69	69	55
Dec	72	71	71	72	72	72	73	73	60	39	38	38	37	37	39	42	73	73	73	73	73	73	73	72	62
Avg	64	64	64	64	64	64	60	44	25	18	17	17	17	17	18	19	40	62	65	66	65	65	65	65	47

Discussion Questions

- Is there a need for review of RESOLVE and SERVM outputs before they are used as inputs to the ACC?
- Is there a need for review of ACC outputs before the ACC is released as part of a Resolution or Decision?
- How much time would be needed for review?
- How should the review fit in with the current structure of the proceeding?

Which files should be made available for review?

Category	Possible Data to be Released
Inputs	IRP resource build by scenario, gas forecast, fossil plant heat rates and renewable profiles
Modeling Docs	Key changes made to SERVM since the 2020 ACC
Raw Results	SERVM dispatch raw results for a typical week in each season for a subset of years, and post-processed results from SERVM
Benchmarking Results	Month-hour average heatmap of raw energy and ancillary service prices, compared with 2021 historical prices for a subset of years
Benchmarking Results	Price duration curve for prices, compared with 2021 historical prices for a subset of years
OTHER?	OTHER?

Note: Production simulation models are proprietary, and require a license fee and substantial expertise to run, so it is not feasible to provide stakeholders direct access to the model and case files.

Session 9 (Topic 7)

Issues related to natural gas

Natural Gas

- Natural Gas GHG Adder
 - Should the Natural Gas ACC and the Electric ACC use the same GHG adder?
 - Should (someone) develop a Natural Gas GHG adder based on the cost of renewable natural gas?
 - If so, who should do this (or where should it be done)?
- Are other changes needed to the Natural Gas ACC?
- Gas Transportation Rates (SEIA presentation)

Natural gas transportation rate issues

- Split between northern (PG&E) and southern (SoCalGas) California
- Choice of the marginal Electric Generation (EG) transportation rate
- Use currently-effective and approved gas transportation rates
- Use of the IEPR forecast limit it to the market cost of gas at the California border?
- Future escalation in gas transportation rates the general inflation rate is too low.
 - Gas throughput will decline.
 - Gas utilities continue to incur significant safety & replacement costs.
 - Look at historical trends since the San Bruno explosion.
 - Recent studies of future gas transport rates
 - Gridworks, California's Gas System in Transition: Equitable, Affordable, Decarbonized and Smaller, available at https://gridworks.org/initiatives/cagas-system-transition/.

Session 10 (Topic 8)

Definition of major vs. minor ACC updates

Discussion Questions

- Are "minor" and "major" ACC updates clearly defined?
- If not, what should we change?

D.16-06-007, Section 2.2:

The annual data update shall also include updates to the inputs contained in...Attachment 2. However, the annual update shall not add to or delete from the list of avoided costs in the calculator, or modify (except for correcting errors) the methods or models used to estimate the various avoided costs.

D.19-05-019, Section 7:

We clarify that minor changes include data and input updates as indicated in D.16-06-007 but can also include changes to the modeling method that most parties can reasonably agree are minor in scope and impact.

California Public Utilities Commission

Joy.Morgenstern @cpuc.ca.gov

Energy+Environmental Economics

Annualized Storage Costs

Declining Storage Capital Costs in RESOLVE and ACC Modeling

- There are multiple ways to skin a cat and no one 'right' way to annualize capital costs of a longlived asset
- + Capital costs of energy storage are modeled in RESOLVE and in the ACC

+ RESOLVE

- Is multi-period optimization that considers declining technology costs for energy storage endogenously. All else equal, the model will delay adoption of storage to take advantage of declining costs
- RESOLVE models project risk and financial structure specific to each resource assuming cost recovery via longterm PPA with detailed financial pro-forma modeling. This approach reflects the timing of cash flows more accurately than a RECC calculation.

+ ACC

- Uses Capital, Fixed O&M, Periodic Replacement and Augmentation costs for energy storage directly from RESOLVE
- For any year, you can select and view the detailed financial pro forma that calculates the annualized costs in the <u>ACC Net Cone spreadsheet</u>. (<u>https://willdan.box.com/v/2021CPUCAvoidedCosts</u>)</u>

Annualized Storage Costs

Storage Cost Inputs (IRP)

D			Utility-scale Battery - Li	Utility-scale Battery - Li
Resource			[Capacity] - No ITC	[Energy] - No ITC
Category for Cost Reductions	Resource Category		Battery Storage-Standalone	Battery Storage-Standalone
	Technology Type		Lithium ion (Grid) - Capacity	Lithium ion (Grid) - Energy
	Techno-Resource Group		1	
	Active Cost Trajectory Scenario		Mid	Mid
Performance Inputs		Units		
Plant Output	Installed Capacity	MW-ac	1	4
	Capacity Factor	%	15.0%	
	Degradation	%/yr	0.0%	
Plant Cost Inputs				
Capital Costs	Installed Cost, 2018	\$/kW-ac	\$208	\$244
	Progress Multiplier	%	94%	94%
	Installed Cost, 2020	\$/kW-ac	\$196	\$230
Interconnection Costs	Interconnection Fraction of CapEX	%		
	Interconnection Cost	\$/kW	\$0	
Fixed O&M	Annual Fixed O&M, 2018 COD	\$/kW-yr	\$1.7	\$2.0
	Progress Multiplier	%	94%	94%
	Annual Fixed O&M, 2020 COD	\$/kW-yr	\$1.57	\$1.84
	Annual Escalation	%/yr	2.00%	2.00%
Variable O&M	Variable O&M	\$/MWh	\$0	\$0
	Annual Escalation	%/yr	2.00%	2.00%
Fuel Costs	Fuel Type			
	Unit Fuel Cost	\$/MMBtu	0	0
	Annual Escalation	%/yr	0.02	0.02
	Heat Rate	Btu/kWh		
Warranty & Augmentation Costs	Annual Warranty Extension Cost	%	1.5%	1.5%
	Initial Warranty Length	yrs	2	2
	Annual Augmentation Cost	%	0.0%	4.2%
Property Tax	Property Tax	%	0.0%	0.0%

Summary Annualized Costs RESOLVE and ACC models match

Detailed Financial Pro Forma

Leve	lized Cost Calculation - Utility-	scale Battery - Li [En	ergy] - No ITC,	Levelization of Cost by Catego
	Pro_Forma tab from RESOLVE Re	source Costs and Build		Capital Costs
	Resource Cost, Perform	nance. & Financing		Investment Tax Credit
		,		Fixed Operations & Main
	System Cost			Warranty
	System Size (MW)		1.00	
	Duration (hours)		4	Augmentation
	Capacity Costs (\$/kW)		\$196	Total
	Energy Costs (\$/kWh Installed)		\$230	Total Fixed Cost
	System Cost (\$/kW)		\$1,116	
	Capacity Costs (\$)		\$195,861	Discount Rate
	Energy Costs (\$)		\$920,578	NPV Energy
	System Cost (\$)		\$1,116,440	
	Initial debt service reserve fundir	ng (Ş)	0	NPV Capacity
	Total System Cost (\$)		\$1,116,440	Levelized All-In Costs (\$/MWh
	Interconnection Cost (\$ /UW)		\$0	Levelized Fixed Costs (\$/MWh
	Interconnection Cost (\$/kW) Interconnection Cost (\$)		\$0	Variable Cost Pass Through
	interconnection cost (5)		ŞU	
	Performance Inputs			
	Capacity Factor (AC)		15.0%	Cash Flow
	Annual Output for Year 1 (kWh)		1,314	Casili i low
	Degradation Factor		0.00%	
	System Economic Life (=PPA Term	1)	20	Energy Production (MWh)
				Capacity (MW)
	Ongoing Costs			
	Fixed O&M Costs Capacity (\$/kW		\$1.57	Cost of Generation (\$/MWh)
	Fixed O&M Costs Energy (\$/kWh	Installed-yr)	\$1.84	Operating Revenue
	Fixed O&M Costs (\$/kW-yr)		\$8.93	Total Revenue
	Fixed O&M Costs Escalator (%/yr)	2.00%	rotal nevenue
	Variable O&M Costs (\$/MWh) Variable O&M Costs Escalator (%	(1)	\$0.00 2.00%	
	Valiable Oktivi Costs Escalator (76	(11)	2.00%	Fixed O&M Costs
				Warranty
				Augmentation
				Total Costs
	Outputs	\$/MWh	\$/kW-yr	
	Capital	\$88.89	\$116.81	Operating Profit
	Interconnection Cost	\$0.00	\$0.00	
	Property Tax & Insurance	\$0.00	\$0.00	Interest Evenes
	ITC	\$0.00	\$0.00	Interest Expense
	Fixed O&M	\$6.80	\$8.93	Loan Repayment Expense (Prin
	Warranty	\$10.37	\$13.63	
	Augmentation	\$29.42	\$38.66	
	Periodic Replacement	\$0.00	\$0.00	
	Variable O&M	\$0.00		
	Fuel	\$0.00		
	Carbon	\$0.00		
	PTC	\$0.00	\$0.00	
	Total	\$135.49	\$178.03	

Investment Tax Credit	\$0	\$0	\$0
Fixed Operations & Maintenanc	(\$6,561)	(\$6,692)	(\$6,826)
Warranty	\$0	\$0	(\$12,798
Augmentation	(\$28,402)	(\$28,970)	(\$29,549
Total	(\$6,060)	\$25,000	(\$10,494
Total Fixed Cost	(\$6,060)	\$25,000	(\$10,494)
Discount Rate			
NPV Energy			
NPV Capacity			
Levelized All-In Costs (\$/MWh)			
Levelized Fixed Costs (\$/MWh)			
Variable Cost Pass Through	\$0	\$0	\$0
Cash Flow	1	2	3
	1	2	3
Energy Production (MWh)	1,314	1,314	1,314
	1	1	1
Capacity (MW)	1		
	\$138.20	\$140.96	\$143.78
Cost of Generation (\$/MWh)		\$140.96 \$185,228	
Cost of Generation (\$/MWh) Operating Revenue	\$138.20		\$188,932
Cost of Generation (\$/MWh) Operating Revenue Total Revenue	\$138.20 \$181,596	\$185,228	\$188,932 \$188,932
Cost of Generation (\$/MWh) Operating Revenue Total Revenue Fixed O&M Costs	\$138.20 \$181,596 \$181,596	\$185,228 \$185,228	\$188,932 \$188,932 (\$9,478
Cost of Generation (\$/MWh) Operating Revenue Total Revenue Fixed O&M Costs Warranty	\$138.20 \$181,596 \$181,596 (\$9,110)	\$185,228 \$185,228 (\$9,292)	\$188,932 \$188,932 (\$9,478 (\$17,772
Capacity (MW) Cost of Generation (\$/MWh) Operating Revenue Total Revenue Fixed O&M Costs Warranty Augmentation Total Costs	\$138.20 \$181,596 \$181,596 (\$9,110) \$0	\$185,228 \$185,228 (\$9,292) \$0	\$188,932 \$188,932 (\$9,478 (\$17,772 (\$41,031
Cost of Generation (\$/MWh) Operating Revenue Total Revenue Fixed O&M Costs Warranty Augmentation Total Costs	\$138.20 \$181,596 \$181,596 (\$9,110) \$0 (\$39,438)	\$185,228 \$185,228 (\$9,292) \$0 (\$40,226)	\$188,932 \$188,932 (\$9,478 (\$17,772 (\$41,031 (\$68,281
Cost of Generation (\$/MWh) Operating Revenue Total Revenue Fixed O&M Costs Warranty Augmentation	\$138.20 \$181,596 \$181,596 (\$9,110) \$0 (\$39,438) (\$48,548)	\$185,228 \$185,228 (\$9,292) \$0 (\$40,226) (\$49,519)	\$143.78 \$188,932 \$188,932 (\$9,478 (\$17,772 (\$41,031 (\$68,281 \$120,651 (\$9,767

\$28,902

\$60,661

\$38,679