Senior Consultant
Zachary Ming

Featured Image

 

Zach Ming develops energy models and communicates the findings on behalf of utilities, regulatory agencies, and trade groups. He combines technical acumen with a talent for providing clear results that translate into action. Recent projects have included modeling policy- and technology-change scenarios for a large utility to support its strategic planning process, preparing testimony regarding the rate design for a natural gas pipeline, and calculating the contribution of wind and solar resources toward system capacity for multiple utilities. He has also constructed a model to evaluate the economics of rooftop solar policies in California, Nevada, Oregon, and New York.

Zach enjoys being on the front lines of the most interesting topics in the industry and analyzing the rapid transformation of the electricity sector. He is passionate about creating an electricity system that is both economically efficient and environmentally sustainable.

Zach joined E3 in 2013. His prior experience includes internships at General Electric, Citigroup, Oklahoma Gas & Electric, and MAP Royalty.

Education: MS, management science and engineering (energy and environment track), and BS, civil and environmental engineering (atmosphere and energy), Stanford University

Projects

Litigation: pipeline toll restructuring proposal | Canadian Association of Petroleum Producers, 2013–14

The Canadian Association of Petroleum Producers (CAPP) retained E3 to develop regulatory strategy and testify before the Canadian National Energy Board (NEB) in proceedings opposing TransCanada’s proposal to restructure tolls on the Mainline, which transports natural gas from western Canada to eastern markets.  TransCanada had proposed restructuring tolls to maintain the line’s economic viability, as throughput declined due to soaring shale gas production in the northeastern U.S. The proposed change shifted fixed costs away from shippers, who were direct customers of the Mainline, toward producers, who were supplying gas to TransCanada’s own distribution network. Our alternative on behalf of CAPP offered a performance-based incentive with some pricing flexibility and balancing accounts that allowed TransCanada a reasonable opportunity to increase throughput and revenues and recover its investment. The NEB ultimately rejected TransCanada’s proposal in favor of CAPP’s, averting a shift of $300 million per year in fixed costs to western Canadian gas producers.

Litigation: assessing solar resources value | Oregon PUC staff, 2016–17

The Oregon Public Utilities Commission (OPUC) staff retained E3 to develop a methodology for calculating the value of customer-owned solar photovoltaic resources to ratepayers of investor-owned electric utilities, with the aim of informing regulatory policy. E3 partner Arne Olson served as an expert witness on behalf of the commission staff in a litigated case before the OPUC. Our methodology received broad support from stakeholders, including utilities, environmental groups, solar industry advocates, and consumer advocates. The commission is expected to rule on the proposed methodology in early 2017.

Net energy metering tariff evaluation tool | CPUC, 2015

E3 created a public tool for the California Public Utilities Commission (CPUC) to inform the development of a successor to existing net energy metering (NEM) tariffs for eligible customer-sited renewable generators. This tool helped the CPUC and stakeholders balance legislative directives to design tariffs that maintain sustainable growth of such generation and ensure that total benefits to customers are approximately equal to total costs.

The tool lets users evaluate different rate designs, simulating their impact on adoption of customer-sited PV and on bills for all ratepayers, while accounting for feedback effects on future rates and life-cycle cost-effectiveness. Providing a common model to all parties allowed the CPUC and stakeholders to focus on fundamental differences in proposals and scenarios, rather than on disagreements and confusion over model differences.

Time-dependent valuation for building codes | CEC, 1999–present

E3 supports the California Energy Commission (CEC) in implementing the state building energy code by maintaining the economic framework for energy standard requirements and allowed trade-offs for new construction. We have worked with the CEC and its stakeholders since 1999 to continually refine a time-dependent valuation (TDV) methodology, and we are now supporting the life-cycle cost analysis for measures proposed in the 2019 cycle. The TDV methodology uses a 30-year forecast of the social cost of energy that varies hourly and by location to account for shifts in system peaks over time, and regional variations in climate and grid utilization. In the 2019 code cycle, E3 is evaluating the cost-effectiveness of California’s goal to require that all new residential buildings be zero net energy by 2020 and that nonresidential buildings be zero net energy by 2030. We are also assessing the economic and GHG emission impacts of switching to all-electric housing and the value of integrating controllable thermostats and appliances into new buildings.

Publications

Avoided Cost Model for evaluating DER programs | CPUC, 2004–present

Since 2004, the California Public Utilities Commission (CPUC) has used E3’s Avoided Cost Model (ACM) to estimate the benefits of energy efficiency, distributed generation, energy storage, and other distributed energy resources (DERs). The ACM has evolved along with energy markets and policy in the West, and it currently projects avoided costs for energy, losses, generation capacity, ancillary services, subtransmission and distribution capacity, renewable portfolio standard purchases, carbon allowances, and other air permit costs. The 30-year hourly forecast is differentiated across California’s 16 climate zones.

The CPUC approves over $1 billion in annual funding for DERs using these avoided costs for its cost-effectiveness tests. The ACM is suitable for stakeholder processes and contentious regulatory proceedings because it uses robust methods and publicly available input data. E3 also allows the download of the ACM so that all stakeholders can audit any of the calculations.

Publications


FULL E3 TEAM

Scroll Up