Director
Amber Mahone

Featured Image

Amber Mahone

Amber Mahone directs E3’s Clean Energy team, which looks across all sectors of the energy economy to evaluate the feasibility and implications of long-term climate solutions. She pursues a data-driven approach to informing investment decisions and policy choices, and relishes unpacking meaningful results from complex models and translating them into actionable decision points for E3’s clients.

Amber’s work draws on her deep expertise in policy analysis, energy systems modeling, resource planning, and energy efficiency, and she has managed some of our most high-profile, high-impact projects. These include evaluating the impacts of California’s 50 percent Renewables Portfolio Standard and analyzing long-term greenhouse gas reduction pathways for the heads of California’s energy and environmental agencies and the office of Gov. Jerry Brown.

Amber began her career working in development at the International Monetary Fund, which made her realize the extent to which the availability of energy resources and citizens’ access to it shape the course of a country’s economy. Today, she is excited to be part of the revolution in renewable energy and electric vehicles, which is radically transforming the global energy economy.

Education: MPA, Princeton University; BA, international relations, Wellesley College

Projects

Pacific Northwest Pathways to 2050 | NW Natural, 2018

E3 analyzed regional 2050 decarbonization scenarios for the Pacific Northwest on behalf of NW Natural, a gas distribution business in Oregon and Southwest Washington. Unlike prior studies, E3’s focused on space heating technologies: both how they perform in cold temperatures and affect the costs of serving heating loads. E3 analyzed four scenarios — two maintaining direct use of gas in buildings, and two assuming large-scale building electrification — and found similar 2050 costs among the gas and cold-climate electric heat pump scenarios, and higher costs in the standard electric heat pump scenario. Gas scenarios require three things beyond the decarbonization strategies common to all scenarios: reducing the carbon intensity of natural gas by blending up to 30 percent carbon-neutral renewable natural gas (RNG) and hydrogen; high building energy efficiency; and deeper GHG reductions in non-building sector emissions. Electrification scenarios require rapid consumer adoption of electric heating technologies, especially cold-climate heat pumps, and significant electricity sector investments to address winter peak demand from electric space heating.

Publications

Deep Decarbonization in a High Renewables Future: Updated Results from the California PATHWAYS model | CEC, 2015–2018

This project evaluates long-term energy scenarios in California through 2050 using the California PATHWAYS model. These scenarios investigate options and costs to achieve a 40 percent reduction in greenhouse gas emissions by 2030 and an 80 percent reduction in greenhouse gas emissions by 2050, relative to 1990 levels. Ten mitigation scenarios are evaluated, with each […]

Publications

Modeling California’s 50 Percent Renewables Portfolio Standard

In early 2013, California’s five largest electric utilities needed to find out how grid operations would be affected if the state increased its Renewables Portfolio Standard (RPS) to 50 percent by 2030. They turned to E3 to examine operational and cost implications, explore how the utilities could reach the 50 percent RPS goal, and assess […]

Investigating a higher RPS for California | LADWP, PG&E, SMUD, SDG&E, and SCE, 2013–14

On behalf of California’s five largest electric utilities, E3 evaluated the challenges, costs, and potential solutions for achieving a 50 percent renewables portfolio standard (RPS) by 2030. Using our Renewable Energy Flexibility Model (REFLEX), we performed detailed operational studies of power system dispatch flexibility constraints under high levels of wind and solar generation. We found that achieving a 50 percent RPS is feasible and that California’s power system can remain reliable as long as renewable resources can be dispatched in response to grid needs. Our study recommended strategies for integrating higher levels of renewables, including greater regional coordination, renewables portfolio diversity, flexible generation capacity, flexible loads, and energy storage. We found that deploying these strategies would reduce the need to curtail renewables, lowering the cost of reaching 50 percent RPS.

Publications

Economic analysis of market-based carbon reduction | Oregon Department of Environmental Quality, 2016–2017

E3 worked with the Oregon Department of Environmental Quality (DEQ) to evaluate the economic impacts of adopting a carbon market in Oregon, per the directive of the State Legislature (SB 5701). E3 performed a detailed literature review of cap and trade programs and impacts across North America and Europe. We also developed an economic analysis of Oregon’s climate policies, including an estimate of the potential macroeconomic impacts of cap and trade in Oregon. E3 evaluated two categories of climate policies: (1) ‘complementary policies,’ which are the policies that drive GHG emissions reductions outside of the carbon market (e.g. the renewable portfolio standard and energy efficiency programs), and (2) different configurations of a future carbon market. E3 modeled the complementary policies in the energy-accounting model LEAP (Long-range Energy Alternatives Planning system), and the impacts of the carbon market using the IMPLAN macroeconomic model. The results of this study were presented to Oregon stakeholders in January 2017, and the Oregon DEQ presented the study results to the Oregon Legislature for consideration in February 2017.

 

Publications

New York GHG scenario analysis | NYSERDA, 2016–present

E3 is supporting the New York State Energy Research and Development Authority (NYSERDA) in developing a detailed GHG analysis to quantify the infrastructure and policy changes necessary to meet state climate and energy goals. We are evaluating the GHG and cost implications of a variety of scenarios that are consistent with New York’s goal of reducing statewide GHG emissions by 40 percent below 1990 levels by 2030 and 80 percent below 1990 levels by 2050. In this work, E3 developed a user-friendly PATHWAYS model on the LEAP software platform for NYSERDA, as well as other modeling tools to support evaluating costs and options to decarbonize the electricity sector.

Decarbonizing pipeline gas to help meet GHG reduction goals | SoCalGas, 2014–15

E3 worked with the Southern California Gas Company (SoCalGas) to evaluate the potential of decarbonized pipeline gas fuels and the existing pipeline infrastructure to help meet California’s long-term climate goals. “Decarbonized pipeline gas” refers to gaseous fuels—including biogas—with a net-zero or very low GHG impact. E3 used its PATHWAYS model to evaluate two scenarios, one with heavy electrification of buildings and vehicles and one with a mix of electrification and decarbonized pipeline gas. Both were found capable of meeting the state’s 2050 climate goals with comparable total costs within the ranges of uncertainty that we evaluated. The results of the study suggest that the use of decarbonized gas distributed through the state’s existing pipeline network would complement a low-carbon electrification strategy. SoCalGas has used the results of this study to inform its energy and climate policy positions in California.

Publications

California’s 2017 Climate Change Scoping Plan | CARB, 2016–2017

E3 supported the California Air Resources Board (CARB) in developing an updated “Scoping Plan” strategy for achieving California’s 2030 greenhouse gas target. California Senate Bill 32 (Pavley, 2016) requires the state to reduce greenhouse gas (GHG) emissions 40% below 1990 levels by 2030. E3’s analysis evaluated the GHG and cost implications of different 2030 scenarios that are consistent with the state’s current policies and GHG target. For this project, E3 updated the California PATHWAYS model to reflect scenarios and input assumptions requested by the CARB. The model results were translated into inputs to a macroeconomic model (REMI) in analysis performed by the CARB to evaluate impacts to statewide economic growth and jobs. E3’s study results were presented in public stakeholder workshops and are reflected in the final Scoping Plan published in November 2017.

 

 

Feasibility and cost of potential 2030 GHG reduction goals | CARB, CEC, CPUC, CAISO, 2014

The California Air Resources Board, California Energy Commission, California Public Utilities Commission, California ISO, and governor’s office engaged E3 to evaluate the feasibility and cost of potential 2030 GHG targets. We focused on emission reduction strategies through 2030, with an eye toward meeting the state’s 2050 GHG reduction goal. Using our PATHWAYS model, we developed several scenarios that varied the mix of low-carbon technologies and the timing of deployment. PATHWAYS is a stock-and-flow model that encompasses the entire state economy with detailed representations of the building, industrial, transportation, and electricity sectors. E3 team members briefed Gov. Jerry Brown and members of the legislature on the results. Our work informed the governor’s Executive Order B-30-15, which calls for a 40 percent reduction in statewide GHG emissions by 2030 relative to 1990 levels. California agencies are using our results in ongoing implementation analysis of the state’s climate goals.

Publications


FULL E3 TEAM

Scroll Up